Preparation and Evaluation of Thermosensitive Plugging MaterialsBased on Shape Memory Polymers
-
摘要:
传统堵漏材料对裂缝性漏失的封堵存在不足,针对该问题,将形状记忆聚合物材料引入封堵作业,利用其“温控形变”特性,制备出温敏型堵漏材料;采用热机械动力分析仪和形状恢复试验,评价了其玻璃态转变温度和形状记忆性能;通过裂缝封堵模拟试验,评价了温敏型堵漏材料的裂缝封堵效果,并探索了其裂缝封堵机理。研究结果表明:温敏型堵漏材料的形变温度(即玻璃态转变温度)可根据漏失层段位置需求在温度80~120 ℃范围内进行调控,形状记忆性能优异(形状恢复率大于95%),且耐温性能良好,初始热解温度230~258 ℃,可适用于温度80~120 ℃的地层,与传统堵漏材料复配后可封堵3~5 mm裂缝。研究结果可为研制和应用新型材料封堵裂缝提供参考。
Abstract:Considering the insufficient ability of traditional plugging materials to seal fractured leakage, shape memory polymers (SMPs) were introduced for plugging. A thermosensitive plugging material was prepared based on SMPs for their “temperature-controlled deformation” property. Then, its glass transition temperature and shape memory performance were evaluated by the thermo-mechanical dynamic analyzer and shape recovery test. Moreover, the simulation tests of fracture plugging were carried out to assess the plugging capability of the polymers on fractures and explore the plugging mechanism. The research results indicated that the deformation temperature(glass transition temperature) of the thermosensitive plugging material could be regulated in the range of 80–120 ℃ according to the locations of the leakage layers, featuring excellent shape memorizing performance (with a shape recovery ratio of more than 95%). In addition, the temperature resistance of this material was good, with the initial pyrolysis temperature between 230 and 258 ℃, which meant that the material could be applied in a formation temperature environment of 80–120 ℃. The compound of this material and the traditional plugging material could successfully seal the fractures with width ranging from 3–5 mm. The research results can provide a reference for the preparation and application of this new material to fracture plugging.
-
-
表 1 形状记忆聚合物单体配比
Table 1 Composition of SMP monomer
样品 质量分数,% E-51 PMP TGE 2-EMI E-MP10 55.85 37.66 6.21 0.28 E-MP20 48.17 39.40 12.04 0.39 E-MP30 40.99 41.11 17.57 0.33 表 2 不同配比形状记忆聚合物的耐温性能
Table 2 Temperature resistance of SMPs with different compositions
样品 热解温度/℃ 玻璃态转变
温度/℃t5 t50 E-MP10 230.5 336.5 86.2 E-MP20 255.0 366.6 101.4 E-MP30 258.2 367.4 107.5 注:t5为样品质量损失5%时的外界温度,℃;t50为样品质量损失50%时的外界温度,℃。 表 3 不同配比形状记忆聚合物的形状恢复性能
Table 3 Shape recovery performance of SMPs with differentcompositions
样品 形状固定率,
%形状恢复率,
%不同温度的形状恢复时间/s tg tg+10℃ tg+20℃ E-MP10 98 100 37 22 22 E-MP20 98 100 43 30 25 E-MP30 98 100 43 41 31 表 4 形状记忆聚合物对钻井液流变性的影响
Table 4 Effect of SMPs on rheology of drilling fluids
试验浆 测试条件 表观黏度/
(mPa·s)塑性黏度/
( mPa·s)动切力/
Pa基浆 老化前 34.5 17.0 15.0 老化后 33.5 18.0 14.0 基浆+E-MP 老化前 35.0 16.0 16.0 老化后 34.0 17.5 14.5 注:基浆为4.0%膨润土+0.4%CMC-LV+水。 表 5 裂缝封堵试验结果
Table 5 Results of fracture plugging experiment
堵漏
工作液裂缝开度/
mm温度/
℃封堵突破
压力/MPa漏失量/
mL封堵
效果1 3×2 25 0 全漏 无效 100 0 全漏 无效 2 3×2 25 0 全漏 无效 100 12.8 23 有效 4×3 100 11.5 36 有效 注:堵漏工作液1为常规堵漏工作液,配方为4.0%膨润土+0.4%CMC-LV+0.2%FIB+4.0%QJD(8/10目)+3.0%QJD(10/20目)+水;堵漏工作液2为含有形状记忆聚合物颗粒的温敏型堵漏工作液,配方为4.0%膨润土+0.4%CMC-LV+0.2%FIB+4.0%QJD(8/10目)+3.0%QJD(10/20目)+3.0%E-MP(8/10目)+3.0%E-MP(10/20目)+水。 -
[1] 张希文,李爽,张洁,等. 钻井液堵漏材料及防漏堵漏技术研究进展[J]. 钻井液与完井液,2009,26(6):74–76. doi: 10.3969/j.issn.1001-5620.2009.06.022 ZHANG Xiwen, LI Shuang, ZHANG Jie, et al. Research progress on lost circulation materials and lost circulation control techno-logy[J]. Drilling Fluid & Completion Fluid, 2009, 26(6): 74–76. doi: 10.3969/j.issn.1001-5620.2009.06.022
[2] 程鹏至,易偲文,梅林德,等. 新型堵漏材料的研制及性能评价[J]. 钻井液与完井液,2016,33(3):51–55. doi: 10.3969/j.issn.1001-5620.2016.03.010 CHENG Pengzhi, YI Caiwen, MEI Linde, et al. The development and evaluation of a set of new lost circulation material[J]. Drilling Fluid & Completion Fluid, 2016, 33(3): 51–55. doi: 10.3969/j.issn.1001-5620.2016.03.010
[3] 何龙,史堃,杨健,等. 裂缝性地层堵漏材料承压性能及材料优选研究[J]. 钻采工艺,2019,42(2):42–44. doi: 10.3969/J.ISSN.1006-768X.2019.02.12 HE Long, SHI Kun, YANG Jian, et al. Study on pressure-bearing property and material optimum selection of leakage-plugging materials for fractured formation[J]. Drilling & Production Technology, 2019, 42(2): 42–44. doi: 10.3969/J.ISSN.1006-768X.2019.02.12
[4] 黄贤杰,董耘. 高效失水堵漏剂在塔河油田二叠系的应用[J]. 西南石油大学学报(自然科学版),2008,30(4):159–162. HUANG Xianjie, DONG Yun. The application of the highly effective lost circulation additive in the Permian in Tahe Oilfield[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2008, 30(4): 159–162.
[5] 张歧安,徐先国,董维,等. 延迟膨胀颗粒堵漏剂的研究与应用[J]. 钻井液与完井液,2006,23(2):21–24. doi: 10.3969/j.issn.1001-5620.2006.02.007 ZHANG Qi’an, XU Xianguo, DONG Wei, et al. Study and application of granular postponed-swelling LCM[J]. Drilling Fluid & Completion Fluid, 2006, 23(2): 21–24. doi: 10.3969/j.issn.1001-5620.2006.02.007
[6] 蒋建军,胡毅,陈星,等. 形状记忆智能复合材料的发展与应用[J]. 材料工程,2018,46(8):1–13. doi: 10.11868/j.issn.1001-4381.2018.000344 JIANG Jianjun, HU Yi, CHEN Xing, et al. Development and application of shape memory intelligent composites[J]. Journal of Materials Engineering, 2018, 46(8): 1–13. doi: 10.11868/j.issn.1001-4381.2018.000344
[7] 王垚, 李春福, 林元华, 等. SMA在石油工程中的应用研究进展[J]. 材料导报, 2016, 30(增刊2): 98−102. WANG Yao, LI Chunfu, LIN Yuanhua, et al. Research progress of application of SMA in petroleum engineering[J]. Materials Reports, 2016, 30(supplement 2): 98−102.
[8] 段友智,侯倩,刘锦春,等. 完井用多孔隙形状记忆聚合物的性能影响因素研究[J]. 石油钻探技术,2021,49(2):67–71. doi: 10.11911/syztjs.2020100 DUAN Youzhi, HOU Qian, LIU Jinchun, et al. Study on the influencing factors of the properties of porous shape memory polymer for well completion[J]. Petroleum Drilling Techniques, 2021, 49(2): 67–71. doi: 10.11911/syztjs.2020100
[9] KUMAR K S S, NAIR C P R. Hydrophobic shape memory poly (oxazolidone-triazine) cyclomatrix networks with high transition temperatures[J]. RSC Advances, 2014, 4(6): 2969–2973. doi: 10.1039/C3RA44934C
[10] PARAMESWARANPILLAI J, RAMANAN S P, JOSE S, et al. Shape memory properties of epoxy/PPO-PEO-PPO triblock copolymer blends with tunable thermal transitions and mechanical characteristics[J]. Industrial & Engineering Chemistry Research, 2017, 56(47): 14069–14077.
[11] 汤龙皓,王彦玲,李永飞,等. 热致型形状记忆聚合物的研究现状与应用进展[J]. 机械工程材料,2019,43(9):1–7. doi: 10.11973/jxgccl201909001 TANG Longhao, WANG Yanling, LI Yongfei, et al. Research status and application progress of thermal-induced shape memory polymer[J]. Materials for Mechanical Engineering, 2019, 43(9): 1–7. doi: 10.11973/jxgccl201909001
[12] 段友智,刘欢乐,艾爽,等. 形状记忆筛管膨胀性能测试[J]. 石油钻探技术,2020,48(4):83–88. doi: 10.11911/syztjs.2020038 DUAN Youzhi, LIU Huanle, AI Shuang, et al. Test of the expansion performance for shape memory screens[J]. Petroleum Drilling Techniques, 2020, 48(4): 83–88. doi: 10.11911/syztjs.2020038
[13] 暴丹,邱正松,叶链,等. 热致形状记忆“智能”型堵漏剂的制备与特性实验[J]. 石油学报,2020,41(1):106–115. doi: 10.7623/syxb202001010 BAO Dan, QIU Zhengsong, YE Lian, et al. Preparation and characteristic experiments of intelligent lost circulation materials based on thermally shape memory polymer[J]. Acta Petrolei Sinica, 2020, 41(1): 106–115. doi: 10.7623/syxb202001010
[14] 潘一,徐明磊,郭奇,等. 钻井液智能堵漏材料研究进展[J]. 材料导报,2021,35(9):9223–9230. doi: 10.11896/cldb.20030053 PAN Yi, XU Minglei, GUO Qi, et al. Research progress of smart plugging materials for drilling fluid[J]. Materials Reports, 2021, 35(9): 9223–9230. doi: 10.11896/cldb.20030053
[15] 王照辉,崔凯潇,蒋官澄,等. 基于形状记忆环氧树脂聚合物的温敏可膨胀型堵漏剂研制及性能评价[J]. 钻井液与完井液,2020,37(4):412–420. doi: 10.3969/j.issn.1001-5620.2020.04.002 WANG Zhaohui, CUI Kaixiao, JIANG Guancheng,et al. Development and evaluation of a temperature-sensitive expandable lost circulation material made from a shape memory epoxy polymer[J]. Drilling Fluid & Completion Fluid, 2020, 37(4): 412–420. doi: 10.3969/j.issn.1001-5620.2020.04.002
[16] 刘学鹏. 温敏堵漏水泥浆体系研究与应用[J]. 钻探工程,2022,49(2):110–116. LIU Xuepeng. Research and application of the temperature sensitive plugging cement slurry system[J]. Drilling Engineering, 2022, 49(2): 110–116.
[17] 王宝田,杨倩云,杨华. 形状记忆聚合物型温控膨胀堵漏剂SDP制备技术[J]. 钻井液与完井液,2022,39(1):41–45. WANG Baotian, YANG Qianyun, YANG Hua. Research on preparation technology of temperature-controlled expansion plugging agent based on shape memory polymer[J]. Drilling Fluid & Completion Fluid, 2022, 39(1): 41–45.
[18] KAUR J, SAXENA M, RISHI N. An overview of recent advances in biomedical applications of click chemistry[J]. Bioconjugate Chemistry, 2021, 32(8): 1455–1471. doi: 10.1021/acs.bioconjchem.1c00247
-
期刊类型引用(8)
1. 刘智勤,徐加放,彭巍,徐超,于晓东. 陵水区块超深水高性能恒流变油基钻井液技术. 钻井液与完井液. 2024(02): 184-190 . 百度学术
2. 胡南丁,杨进,于辰,包苏都娜,周健一,王佳康,丁益达. 海上钻井表层导管表面摩擦力变化机理研究. 石油机械. 2022(01): 75-80 . 百度学术
3. 熊亮,谢文卫,张伟,于浩雨. 跟管钻进下套管技术在大洋钻探中的应用. 探矿工程(岩土钻掘工程). 2020(07): 16-22+35 . 百度学术
4. 王腾,何家龙,刘锦昆. 管土界面摩擦疲劳效应对深水井口导管贯入阻力的影响. 岩土工程学报. 2020(08): 1532-1539 . 百度学术
5. 邓玉明,刘正礼,赵维青,赵苏文. 南海深水钻井导管水下打桩可打性评估. 天然气与石油. 2020(06): 86-91 . 百度学术
6. 刘正礼,严德. 南海东部荔湾22–1–1超深水井钻井关键技术. 石油钻探技术. 2019(01): 13-19 . 本站查看
7. 耿铁,邱正松,汤志川,赵欣,苗海龙. 深水钻井抗高温强抑制水基钻井液研制与应用. 石油钻探技术. 2019(03): 82-88 . 本站查看
8. 张俊成,李忠慧,彭昊,胡尹凌,李志强. 深水环境下钻井面临的难点与解决对策. 山东化工. 2018(14): 104-107 . 百度学术
其他类型引用(6)