呼探1井ϕ139.7 mm尾管精细动态控压固井技术

王敬朋, 张伟, 吴继伟, 魏瑞华, 马锦明, 杨虎

王敬朋,张伟,吴继伟,等. 呼探1井ϕ139.7 mm尾管精细动态控压固井技术[J]. 石油钻探技术,2022, 50(6):92-97. DOI: 10.11911/syztjs.2022021
引用本文: 王敬朋,张伟,吴继伟,等. 呼探1井ϕ139.7 mm尾管精细动态控压固井技术[J]. 石油钻探技术,2022, 50(6):92-97. DOI: 10.11911/syztjs.2022021
WANG Jingpeng, ZHANG Wei, WU Jiwei, et al. Precise dynamic managed-pressure cementing technologies for ϕ139.7 mm liner cementing in Well Hutan-1 [J]. Petroleum Drilling Techniques,2022, 50(6):92-97. DOI: 10.11911/syztjs.2022021
Citation: WANG Jingpeng, ZHANG Wei, WU Jiwei, et al. Precise dynamic managed-pressure cementing technologies for ϕ139.7 mm liner cementing in Well Hutan-1 [J]. Petroleum Drilling Techniques,2022, 50(6):92-97. DOI: 10.11911/syztjs.2022021

呼探1井ϕ139.7 mm尾管精细动态控压固井技术

基金项目: 中国石油重大专项“准噶尔南缘和玛湖等重点地区优快钻完井技术集成与试验”(编号:202019F-33)部分研究内容
详细信息
    作者简介:

    王敬朋(1986—),男,河北元氏人,2013年毕业于中国石油大学(华东)石油工程专业,2017年获西南石油大学石油与天然气工程专业硕士学位,在读博士研究生,工程师,主要从事钻井与固井技术研究。E-mail:296504445@qq.com

  • 中图分类号: TE256+.3

Precise Dynamic Managed-Pressure Cementing Technologies for ϕ139.7 mm Liner Cementing in Well Hutan-1

  • 摘要:

    呼探1井ϕ139.7 mm尾管固井时封固段长、井底温度高,导致存在漏失与溢流风险大、对水泥浆性能要求高及水泥浆稠化时间不易控制等技术难点。为解决上述技术难点,在该井ϕ139.7 mm尾管固井段进行了精细动态控压固井技术试验。通过优化水泥浆配方、精细设计浆柱和优化设计套管扶正器安放位置,制定确保井筒动态压力介于地层孔隙压力与漏失压力之间等的技术措施,利用精细控压钻井装备,实现了控压下尾管、注水泥和水泥浆候凝,最终实现了全过程精细动态控压固井,该井ϕ139.7 mm尾管固井质量合格。呼探1井ϕ139.7 mm尾管精细控压固井成功,表明精细控压固井能够提高超深井长封固段窄安全密度窗口地层的固井质量,可为准噶尔盆地南缘深层油气勘探提供技术保障。

    Abstract:

    Due to long cementing intervals and high bottomhole temperature, the ϕ139.7 mm liner cementing in Well Hutan-1 was exposed to various technical difficulties, such as high lost circulation and overflow risks, high requirements on the performance of the cement slurry, and difficult control of the thickening time of the cement slurry. Precise dynamic managed-pressure cementing technologies were tested in the ϕ139.7 mm liner cementing section in this well to address the above technical difficulties. Specifically, the cement slurry formulation was improved, the slurry column was precisely designed, and the casing centralizer placement was optimized. Technical measures were developed to ensure that the dynamic wellbore pressure was between the formation pore pressure and the lost circulation pressure, and the precise managed-pressure drilling equipment was utilized. Managed-pressure liner running, cement slurry injection, and waiting-on-cement were thereby implemented. As a result, a “whole-process” precise dynamic managed-pressure cementing was ultimately achieved. The ϕ139.7 mm liner cementing in Well Hutan-1 was considered up to standard. The successful implementation of precise managed-pressure cementing during the ϕ139.7 mm liner cementing in Well Hutan-1 indicates that precise managed-pressure cementing can effectively enhance the cementing quality of long cementing intervals of ultra-deep wells in formations with narrow safety pressure window and can provide technical assurances for the exploration of deep oil and gas at the southern margin of the Junggar Basin.

  • 图  1   呼探1井地层三压力剖面

    Figure  1.   Formation three-pressure profile of Well Hutan-1

    图  2   呼探1井实钻井身结构

    Figure  2.   Actual casing program of Well Hutan-1

    图  3   精细控压系统地面装备示意

    Figure  3.   Ground equipment of precise managed-pressure system

    表  1   水泥浆设计用量及性能

    Table  1   Design dosage and performance of cement slurry

    水泥浆封固井段/
    m
    密度/
    (kg·L−1
    水泥浆
    用量/m3
    温度/
    压力/
    MPa
    稠化时间/
    min
    24 h抗压
    强度/MPa
    静胶凝
    时间/s
    稠度系数流性指数
    领浆3 523~5 3002.102414315852518.84 1300.9330.666
    中间浆5 300~6 1001.901214315840123.21 9550.9060.666
    尾浆6 100~7 6001.902213515833624.3 9150.9060.666
    下载: 导出CSV

    表  2   套管扶正器安放设计结果与套管居中度

    Table  2   Design result of casing centralizer placement and casing centrality

    井段/m套管扶正器类型扶正器外径/mm安放间距/m扶正器数量/个套管居中度,%
    3 523~5 694弹性扶正器190.5336690~95
    5 694~7 060弹性扶正器190.5226365~91
    7 060~7 400弹性扶正器190.544 873~90
    下载: 导出CSV

    表  3   呼探1井ϕ139.7 mm尾管入井过程中的激动压力和井口回压

    Table  3   Surge pressure and wellhead back pressure during ϕ139.7 mm liner running in Well Hutan-1

    尾管下深/
    m
    工况钻井液密度/
    (kg·L−1
    下放速度/
    (m·s−1
    激动压力/
    MPa
    井口回压/
    MPa
    5000静止2.120.0790.2732.98
    下放2.71
    5694静止2.120.0790.3672.98
    下放2.62
    6100静止2.120.0790.422.98
    下放2.56
    7000静止2.120.0790.5382.98
    下放2.44
    7601静止2.120.0790.6172.98
    下放2.37
    下载: 导出CSV
  • [1] 付超胜,敖天,余加水,等. 强封堵防塌剂XZ-OSD在准噶尔盆地南缘山前构造带的现场应用[J]. 钻井液与完井液,2021,38(4):469–473. doi: 10.12358/j.issn.1001-5620.2021.04.011

    FU Chaosheng, AO Tian, YU Jiashui, et al. Field application of a plugging borehole wall anti-collapse agent XZ-OSD in the piedmont structural belt on the south margin of Junggar Basin[J]. Drilling Fluid & Completion Fluid, 2021, 38(4): 469–473. doi: 10.12358/j.issn.1001-5620.2021.04.011

    [2] 王敬朋,李渊,葛晓波,等. 准噶尔盆地南缘冲断带:呼探1井超深井钻井方案优化[J]. 新疆石油天然气,2020,16(2):19–23. doi: 10.3969/j.issn.1673-2677.2020.02.005

    WANG Jingpeng, LI Yuan, GE Xiaobo, et al. Optimization of drilling scheme for ultra deep well Hutan 1 in thrust belt in southern margin of Junggar Basin[J]. Xinjiang Oil & Gas, 2020, 16(2): 19–23. doi: 10.3969/j.issn.1673-2677.2020.02.005

    [3] 王启祥,梁宝兴,刘欢,等. 呼探1井清水河组气藏流体相态特征及气藏类型[J]. 新疆石油地质,2021,42(6):709–713.

    WANG Qixiang, LIANG Baoxing, LIU Huan, et al. Fluid phases and gas reservoirs of qingshuihe formation in Well Hutan-1[J]. Xinjiang Petroleum Geology, 2021, 42(6): 709–713.

    [4] 邹书强,张红卫,伊尔齐木,等. 顺北一区超深井窄间隙小尾管固井技术研究[J]. 石油钻探技术,2019,47(6):60–66. doi: 10.11911/syztjs.2019114

    ZOU Shuqiang, ZHANG Hongwei, Eerqm, et al. Study on cementing technology of narrow gap small liner in ultra deep wells in Shunbei Area 1[J]. Petroleum Drilling Techniques, 2019, 47(6): 60–66. doi: 10.11911/syztjs.2019114

    [5] 李洪,邹灵战,汪海阁,等. 玛湖致密砂砾岩 2 000 m 水平段水平井优快钻完井技术[J]. 石油钻采工艺,2017,39(1):47–52. doi: 10.13639/j.odpt.2017.01.009

    LI Hong, ZOU Lingzhan, WANG Haige, et al. High-quality fast drilling and completion technologies for horizontal wells with horizontal section of 2 000 m long in Mahu tight glutenites[J]. Oil Drilling & Production Technology, 2017, 39(1): 47–52. doi: 10.13639/j.odpt.2017.01.009

    [6] 杨红歧,孙连环,敖竹青,等. 顺北油气田一区超深井三开长封固段固井技术[J]. 石油钻探技术,2020,48(6):33–39. doi: 10.11911/syztjs.2020110

    YANG Hongqi, SUN Lianhuan, AO Zhuqing, et al. Anti-leakage cementing technology for the long well section below technical casing of ultra-deep wells in the No.1 area of Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2020, 48(6): 33–39. doi: 10.11911/syztjs.2020110

    [7] 费中明,党冬红,孔哲,等. 柴达木盆地狮70井溢漏同层尾管固井实践[J]. 石油钻采工艺,2022,44(2):173–177. doi: 10.13639/j.odpt.2000.02.006

    FEI Zhongming, DANG Donghong, KONG Zhe, et al. Practice of liner cementing facing both well kick and lost circulation in Well Shi-70 of Qaidam Basin[J]. Oil Drilling & Production Technology, 2022, 44(2): 173–177. doi: 10.13639/j.odpt.2000.02.006

    [8] 吴天乾,李明忠,李建新,等. 杭锦旗地区正注反挤固井技术研究[J]. 钻采工艺,2021,44(3):104–107. doi: 10.3969/J.ISSN.1006-768X.2021.03.25

    WU Tianqian, LI Mingzhong, LI Jianxin, et al. Study on cementing technology of forward injection and reverse extrusion in Hangjinq Area[J]. Drilling & Production Technology, 2021, 44(3): 104–107. doi: 10.3969/J.ISSN.1006-768X.2021.03.25

    [9] 张凤奇,刘伟,鲁雪松,等. 喜马拉雅晚期构造应力场及其与油气分布的关系:以准噶尔盆地南缘为例[J]. 断块油气田,2021,28(4):433–439. doi: 10.6056/dkyqt202104001

    ZHANG Fengqi, LIU Wei, LU Xuesong, et al. Late Himalayan tectonic stress field and its relationship with hydrocarbon distribution: a case study of southern margin of Junggar Basin[J]. Fault-Block Oil & Gas Field, 2021, 28(4): 433–439. doi: 10.6056/dkyqt202104001

    [10] 田孝茹,卓勤功,张健,等. 准噶尔盆地南缘吐谷鲁群盖层评价及对下组合油气成藏的意义[J]. 石油与天然气地质,2017,38(2):334–344. doi: 10.11743/ogg20170213

    TIAN Xiaoru, ZHUO Qingong, ZHANG Jian, et al. Sealing capacity of the Tugulu Group and its significance for hydrocarbon accumulation in the lower play in the southern Junggar Basin, northwest China[J]. Oil & Gas Geology, 2017, 38(2): 334–344. doi: 10.11743/ogg20170213

    [11] 宋有胜,邹建龙,赵宝辉,等 . 高石梯–磨溪区块高压气井尾管固井技术[J]. 钻井液与完井液,2017,34(2):112–116. doi: 10.3969/j.issn.1001-5620.2017.02.020

    SONG Yousheng, ZOU Jianlong, ZHAO Baohui, et al. Cementing the ϕ177.8 mm Liner in the Block Gaoshiti-Moxi[J]. Drilling Fluid & Completion Fluid, 2017, 34(2): 112–116. doi: 10.3969/j.issn.1001-5620.2017.02.020

    [12] 高元,杨广国,陆沛青,等. 一种大温差弹韧性水泥浆[J]. 钻井液与完井液,2019,36(1):97–101. doi: 10.3969/j.issn.1001-5620.2019.01.019

    GAO Yuan, YANG Guangguo, LU Peiqing, et al. Study and application of a large temperature difference cement slurry with good elasticity and toughness[J]. Drilling Fluid & Completion Fluid, 2019, 36(1): 97–101. doi: 10.3969/j.issn.1001-5620.2019.01.019

    [13] 杨谋,唐大千,袁中涛,等. 固井注水泥浆顶替效率评估的新模型[J]. 天然气工业,2019,39(6):115–122. doi: 10.3787/j.issn.1000-0976.2019.06.013

    YANG Mou, TANG Daqian, YUAN Zhongtao, et al. A new model for evaluating the displacement efficiency of cement slurry[J]. Natural Gas Industry, 2019, 39(6): 115–122. doi: 10.3787/j.issn.1000-0976.2019.06.013

    [14] 宋琳,滕卫卫,王翔宇,等. 不规则井眼注水泥顶替过程数值模拟[J]. 钻采工艺,2020,43(2):27–29. doi: 10.3969/J.ISSN.1006-768X.2020.02.07

    SONG Lin, TENG Weiwei, WANG Xiangyu, et al. Numerical simulation of cement injection displacement process in irregular wellbore[J]. Drilling & Production Technology, 2020, 43(2): 27–29. doi: 10.3969/J.ISSN.1006-768X.2020.02.07

    [15] 魏凯,褚冰川,包莉军,等. 基于相场法的偏心环空注水泥顶替过程数值模拟[J]. 钻采工艺,2020,43(3):123–126. doi: 10.3969/J.ISSN.1006-768X.2020.03.37

    WEI Kai, CHU Bingchuan, BAO Lijun, et al. Numerical simulation of cement injection displacement process in eccentric annulus based on phase field method[J]. Drilling & Production Technology, 2020, 43(3): 123–126. doi: 10.3969/J.ISSN.1006-768X.2020.03.37

    [16] 刘书杰,吴怡,谢仁军,等. 深水深层井钻井关键技术发展与展望[J]. 石油钻采工艺,2021,43(2):139–145. doi: 10.13639/j.odpt.2021.02.002

    LIU Shujie, WU Yi, XIE Renjun, et al. Development and prospect of the key technologies for the drilling of deep wells in deep water[J]. Oil Drilling & Production Technology, 2021, 43(2): 139–145. doi: 10.13639/j.odpt.2021.02.002

    [17] 马勇,郑有成,徐冰青,等. 精细控压压力平衡法固井技术的应用实践[J]. 天然气工业,2017,37(8):61–65. doi: 10.3787/j.issn.1000-0976.2017.08.007

    MA Yong, ZHENG Youcheng, XU Bingqing, et al. Application precise MPD & pressure balance cementing technology[J]. Natural Gas Industry, 2017, 37(8): 61–65. doi: 10.3787/j.issn.1000-0976.2017.08.007

  • 期刊类型引用(7)

    1. 刘金璐,李军,何举涛,杨宏伟,柳贡慧,李辉. 控压固井注入阶段流体密度和流变性分段预测方法. 石油钻探技术. 2024(01): 45-53 . 本站查看
    2. 刘开强,郑友志,冯予淇,师伟,刘洋,蒋平,屈中文,龚泽相,张兴国. 深井固井水泥浆凝固阶段的传压效率时变规律. 天然气工业. 2024(08): 125-132 . 百度学术
    3. 李涛,苏强,杨哲,徐卫强,胡锡辉. 川西地区超深井钻井完井技术现状及攻关方向. 石油钻探技术. 2023(02): 7-15 . 本站查看
    4. 李涛,钱政,池崇荣,何飞. 川西地区超深层小井眼短尾管悬挂固井技术. 复杂油气藏. 2023(01): 118-122 . 百度学术
    5. 费中明,刘鑫,张晔,张小建,蒋世伟,沈磊,杨祖富. 准噶尔盆地南缘超深井天X井尾管精细控压固井技术. 钻井液与完井液. 2023(03): 391-396 . 百度学术
    6. 孙晓峰,陶亮,朱志勇,于福锐,孙铭浩,赵元喆,曲晶瑀. 页岩储层水平扩径井段固井顶替效率数值模拟研究. 特种油气藏. 2023(04): 139-145 . 百度学术
    7. 陈超峰,刘新宇,李雪彬,陈雪茹,相志鹏,丁乙. 准噶尔盆地呼探1井高温高压超深井试油测试技术. 石油钻采工艺. 2023(04): 447-454 . 百度学术

    其他类型引用(1)

图(3)  /  表(3)
计量
  • 文章访问数:  338
  • HTML全文浏览量:  94
  • PDF下载量:  79
  • 被引次数: 8
出版历程
  • 收稿日期:  2021-12-13
  • 修回日期:  2022-06-14
  • 网络出版日期:  2022-11-20
  • 刊出日期:  2022-12-07

目录

    /

    返回文章
    返回