轻质水泥浆固井质量测井评价标准构建

谢关宝

谢关宝. 轻质水泥浆固井质量测井评价标准构建[J]. 石油钻探技术, 2022, 50(1): 119-126. DOI: 10.11911/syztjs.2022015
引用本文: 谢关宝. 轻质水泥浆固井质量测井评价标准构建[J]. 石油钻探技术, 2022, 50(1): 119-126. DOI: 10.11911/syztjs.2022015
XIE Guanbao. Establishment of Logging Evaluation Criteria for the Cementing Quality of Low-Density Cement Slurries[J]. Petroleum Drilling Techniques, 2022, 50(1): 119-126. DOI: 10.11911/syztjs.2022015
Citation: XIE Guanbao. Establishment of Logging Evaluation Criteria for the Cementing Quality of Low-Density Cement Slurries[J]. Petroleum Drilling Techniques, 2022, 50(1): 119-126. DOI: 10.11911/syztjs.2022015

轻质水泥浆固井质量测井评价标准构建

基金项目: 国家重点研发计划“页岩储层甲烷原位燃爆压裂理论与技术”(编号:2020YFA0711804)、国家自然科学基金项目“海相深层油气富集机理与关键工程技术基础研究”( 编号:U19B6003)资助
详细信息
    作者简介:

    谢关宝(1977—),男,山东济宁人,2001年毕业于石油大学(华东)应用地球物理专业,2013年获中国石油大学(华东)地质资源与地质工程专业博士学位,高级工程师,主要从事测井方法研究、岩石物理试验与分析、地球物理正反演及测井资料解释等工作。E-mail:baoupc@163.com。

  • 中图分类号: TE256;P631.8+14

Establishment of Logging Evaluation Criteria for the Cementing Quality of Low-Density Cement Slurries

  • 摘要: 为了给测井评价轻质水泥浆固井质量提供理论依据与标准,基于高温声特性试验及数值模拟结果,分析了水泥浆密度、水泥环厚度、第一界面胶结质量等因素对常规固井质量测井的影响,分析得到:受套管外径和壁厚的影响,随水泥浆密度降低,套管波相对幅度的差异越来越明显;在套管与水泥环之间存在微环隙时,随着水泥环厚度增大,套管波幅度单调增大,但在水泥环厚度较大时,增加幅度趋于平缓;微环隙的存在使套管波幅度明显增大,轻质水泥套管波幅度的增大尤其明显,但在微环隙厚度增至5 mm后,水泥浆密度的影响明显减弱。根据分析结果,构建了测井解释图版,制定出针对轻质水泥浆的固井质量测井评价标准。该评价标准,可望在工程实践中对轻质水泥浆固井质量的测井评价提供有益指导。
    Abstract: To provide a theoretical basis and criteria for the logging evaluation of the cementing quality of low-density cement slurries, the impacts of cement slurry density, cement sheath thickness, and cementing quality at the first interface on the conventional logging of cementing quality were analyzed according to the results of tests on acoustic characteristics at high temperatures and numerical simulation. The following understandings were obtained by the analysis: Affected by the outer diameter and thickness of casing, the difference in the relative amplitude of casing wave became increasingly obvious as the cement slurry density decreases. When there is a micro-annulus between the casing and the cement sheath, the amplitude increased monotonically with the the increase of cement sheath thickness and tended to be gentle when the cement sheath thickness was large. The micro-annulus significantly enhanced the amplitude of casing wave, especially for low-density cement slurry cementing. However, the effect of the cement slurry density weakened markedly after the thickness of the micro-annulus was increased to 5 mm. Depending on the analysis results, a log interpretation chart was established, and logging evaluation criteria were formulated for the cementing quality of low-density cement slurries. The evaluation criteria are expected to provide useful guidance for the logging evaluation of the cementing quality of low-density cement slurries in engineering practice.
  • 图  1   三维有限差分交错网格示意

    Figure  1.   Staggered grid of three-dimensional finite difference

    图  2   套管波相对幅度随水泥浆密度的变化曲线

    Figure  2.   Variation of relative amplitude of casing wave with cement slurry density

    图  3   2种外径套管在不同壁厚等条件下的全波波形

    Figure  3.   Full waveforms of two casings with different outer diameters under different casing thickness conditions

    图  4   不同密度水泥浆在60°方位接收的波形

    Figure  4.   Waveforms of cement slurries with different densities received at 60° azimuth

    图  5   水泥浆密度为1.3 kg/L时120°和60°方位接收的波形

    Figure  5.   Waveforms of the cement slurry with a density of 1.3 kg/L received at 60° and 120° azimuths

    图  6   不同水泥环厚度的套管波全波波形

    Figure  6.   Full waveforms of casing waves with different cement sheath thicknesses

    图  7   套管波幅度与相对幅度随水泥环厚度的变化

    Figure  7.   Variations of amplitude and relative amplitude of casing wave with cement sheath thickness

    图  8   水泥环第一界面不同胶结质量下的全波波形

    Figure  8.   Full waveforms at the first interface of cement sheath with different cementing quality

    图  9   水泥环第一界面胶结差套管波相对幅度

    Figure  9.   Relative amplitude of casing wave at the first interface of cement sheath with poor cementing quality

    图  10   测井解释图版

    Figure  10.   Log interpretation chart

    表  1   不同密度水泥浆胶结后的纵横波声速

    Table  1   acoustic velocities of P-waves and S-waves of cemented cement slurries with different densities

    水泥浆密度/(kg·L–1纵波速度/(m·s–1横波速度/( m·s–1)
    1.32 590.71 182.0
    1.42 590.71 182.0
    1.52 659.61 436.8
    1.92 976.21 548.0
    1.01)1 500.0 0
     注:1)水泥浆是水。
    下载: 导出CSV

    表  2   不同水泥浆固井胶结质量测井评价标准(ϕ139.7 mm套管)

    Table  2   Logging evaluation criteria for cementing quality of different cement slurries (ϕ139.7 mm casing)

    水泥浆密度/(kg·L–1套管波相对幅度,%
    合格下限优良下限
    1.35124
    1.44119
    1.53818
    1.914 7
    下载: 导出CSV

    表  3   不同水泥浆固井胶结质量测井评价标准(ϕ177.8 mm套管)

    Table  3   Logging evaluation criteria for cementing quality of different cement slurries (ϕ177.8 mm casing)

    水泥浆密度/(kg·L–1套管波相对幅度,%
    合格下限优良下限
    1.36129
    1.45124
    1.54421
    1.915 7
    下载: 导出CSV

    表  4   不同水泥浆固井胶结质量测井评价标准(ϕ244.5 mm套管)

    Table  4   Logging evaluation criteria for cementing quality of different cement slurries (ϕ244.5 mm casing)

    水泥浆密度/(kg·L–1套管波相对幅度,%
    合格下限优良下限
    1.37035
    1.46030
    1.55527
    1.915 8
    下载: 导出CSV
  • [1] 田鑫,章成广,毛志强. 低密度水泥固井质量评价方法研究[J]. 石油钻探技术,2006,34(6):36–38. doi: 10.3969/j.issn.1001-0890.2006.06.012

    TIAN Xin, ZHANG Chengguang, MAO Zhiqiang. An evaluation method for cementing operations with light weight cement[J]. Petroleum Drilling Techniques, 2006, 34(6): 36–38. doi: 10.3969/j.issn.1001-0890.2006.06.012

    [2] 步玉环,宋文宇,何英君,等. 低密度水泥浆固井质量评价方法探讨[J]. 石油钻探技术,2015,43(5):49–55.

    BU Yuhuan, SONG Wenyu, HE Yingjun, et al. Discussion of a method for evaluating cementing quality with low-density cement slurries[J]. Petroleum Drilling Techniques, 2015, 43(5): 49–55.

    [3] 罗勇,宋文宇,步玉环,等. 低密度水泥固井质量评价方法的改进[J]. 天然气工业,2012,32(10):59–62. doi: 10.3787/j.issn.1000-0976.2012.10.014

    LUO Yong, SONG Wenyu, BU Yuhuan, et al. Improvement on the cementing quality assessment method for light weight cement sheaths[J]. Natural Gas Industry, 2012, 32(10): 59–62. doi: 10.3787/j.issn.1000-0976.2012.10.014

    [4] 武治强,许明标,刘书杰,等. 固井水泥环胶结质量检测与评价技术研究[J]. 重庆科技学院学报(自然科学版),2017,19(4):39–41.

    WU Zhiqiang, XU Mingbiao, LIU Shujie, et al. Study on testing method and evaluation technology of cement bond quality of well cementation[J]. Journal of Chongqing University of Science and Technology(Natural Sciences Edition), 2017, 19(4): 39–41.

    [5] 王华,陶果,尚学峰,等. 轻质水泥固井质量声波测井评述与方法研究[J]. 测井技术,2014,38(2):165–173.

    WANG Hua, TAO Guo, SHANG Xuefeng, et al. Review and study on acoustic/ultrasonic methods for low-density cement bond logging[J]. Well Logging Technology, 2014, 38(2): 165–173.

    [6] 刁小红. 特殊情况下的固井质量评价方法探讨[J]. 石油仪器,2012,26(5):59–61,65.

    DIAO Xiaohong. Cementing quality evaluation methods in some special cases[J]. Petroleum Instruments, 2012, 26(5): 59–61,65.

    [7] 田进,许明标,鲜若琨,等. 川渝区块页岩气井固井质量评价方法应用现状[J]. 西部探矿工程,2021,33(4):47–49. doi: 10.3969/j.issn.1004-5716.2021.04.015

    TIAN Jin, XU Mingbiao, XIAN Ruokun, et al. Application status of cementing quality evaluation methods for shale gas wells in Sichuan Chongqing Block[J]. West-China Exploration Engineering, 2021, 33(4): 47–49. doi: 10.3969/j.issn.1004-5716.2021.04.015

    [8] 侯振永,郝晓良,马焕英,等. 超声固井质量评价方法改进及应用[J]. 测井技术,2019,43(6):657–660.

    HOU Zhenyong, HAO Xiaoliang, MA Huanying, et al. Improvement and application of the quality evaluation method for UIL cement bond[J]. Well Logging Technology, 2019, 43(6): 657–660.

    [9] 唐军,章成广,张碧星,等. 基于声波–变密度测井的固井质量评价方法[J]. 石油勘探与开发,2016,43(3):469–475.

    TANG Jun, ZHANG Chengguang, ZHANG Bixing, et al. Cement bond quality evaluation based on acoustic variable density logging[J]. Petroleum Exploration and Development, 2016, 43(3): 469–475.

    [10] 李维彦,王天雨,董红. IBC资料固井质量评价处理与分析[J]. 石油天然气学报,2014,36(6):79–82. doi: 10.3969/j.issn.1000-9752.2014.06.018

    LI Weiyan, WANG Tianyu, DONG Hong. Evaluating cementing quality with IBC data[J]. Journal of Oil and Gas Technology, 2014, 36(6): 79–82. doi: 10.3969/j.issn.1000-9752.2014.06.018

    [11] 杨旭辉,余厚全,陈强,等. 泄漏Lamb波在固井质量评价中的应用[J]. 应用声学,2017,36(3):241–248. doi: 10.11684/j.issn.1000-310X.2017.03.008

    YANG Xuhui, YU Houquan, CHEN Qiang, et al. The application of leaky Lamb waves in cementing quality evaluation[J]. Journal of Applied Acoustics, 2017, 36(3): 241–248. doi: 10.11684/j.issn.1000-310X.2017.03.008

    [12] 陈雷,杨红歧,肖京男,等. 杭锦旗区块漂珠–氮气超低密度泡沫水泥固井技术[J]. 石油钻探技术,2018,46(3):34–38.

    CHEN Lei, YANG Hongqi, XIAO Jingnan, et al. Ultra-low density hollow microspheres-nitrogen foamed cementing technology in Block Hangjinqi[J]. Petroleum Drilling Techniques, 2018, 46(3): 34–38.

    [13] 惠伟,戴荣东,郝金克,等. 胜利油田固井质量评价测井技术现状及发展趋势[J]. 石油管材与仪器,2018,4(4):89–92.

    HUI Wei, DAI Rongdong, HAO Jinke, et al. Present status and development trend of cementing quality evaluation in Shengli Oilfield[J]. Petroleum Tubular Goods & Instruments, 2018, 4(4): 89–92.

    [14] 张锦宏. 中国石化石油工程技术现状及发展建议[J]. 石油钻探技术,2019,47(3):9–17. doi: 10.11911/syztjs.2019061

    ZHANG Jinhong. Current status and outlook for the development of Sinopec’s petroleum engineering technologies[J]. Petroleum Drilling Techniques, 2019, 47(3): 9–17. doi: 10.11911/syztjs.2019061

    [15] 路保平. 中国石化石油工程技术新进展与发展建议[J]. 石油钻探技术,2021,49(1):1–10. doi: 10.11911/syztjs.2021001

    LU Baoping. New progress and development proposals of Sinopec’s petroleum engineering technologies[J]. Petroleum Drilling Techni-ques, 2021, 49(1): 1–10. doi: 10.11911/syztjs.2021001

  • 期刊类型引用(3)

    1. 张文锐,代玉杰,刘贵满. 环形井网稠油渗流压力场数值模拟. 当代化工. 2022(01): 196-201+205 . 百度学术
    2. 李瑞轩,黄云龙,李源. 油藏渗流模型与数值模拟技术研究进展. 石油化工应用. 2021(07): 11-15+29 . 百度学术
    3. 房娜,姜光宏,程奇,李广龙,王双龙. 裂缝性油藏不同见水模式下的注水优化. 断块油气田. 2020(05): 633-637 . 百度学术

    其他类型引用(2)

图(10)  /  表(4)
计量
  • 文章访问数:  456
  • HTML全文浏览量:  272
  • PDF下载量:  83
  • 被引次数: 5
出版历程
  • 收稿日期:  2021-04-01
  • 修回日期:  2021-12-31
  • 网络出版日期:  2022-02-17
  • 刊出日期:  2022-03-06

目录

    /

    返回文章
    返回