Processing math: 62%

渤海S油田高含水期强水淹层避射原则研究

葛丽珍, 王公昌, 张瑞, 张烈, 张俊廷

葛丽珍, 王公昌, 张瑞, 张烈, 张俊廷. 渤海S油田高含水期强水淹层避射原则研究[J]. 石油钻探技术, 2022, 50(3): 106-111. DOI: 10.11911/syztjs.2022013
引用本文: 葛丽珍, 王公昌, 张瑞, 张烈, 张俊廷. 渤海S油田高含水期强水淹层避射原则研究[J]. 石油钻探技术, 2022, 50(3): 106-111. DOI: 10.11911/syztjs.2022013
GE Lizhen, WANG Gongchang, ZHANG Rui, ZHANG Lie, ZHANG Junting. Research on the Perforation Avoidance Principle for Strong Water-Flooded Layers with High Water Cut in the S Oilfield of Bohai[J]. Petroleum Drilling Techniques, 2022, 50(3): 106-111. DOI: 10.11911/syztjs.2022013
Citation: GE Lizhen, WANG Gongchang, ZHANG Rui, ZHANG Lie, ZHANG Junting. Research on the Perforation Avoidance Principle for Strong Water-Flooded Layers with High Water Cut in the S Oilfield of Bohai[J]. Petroleum Drilling Techniques, 2022, 50(3): 106-111. DOI: 10.11911/syztjs.2022013

渤海S油田高含水期强水淹层避射原则研究

基金项目: “十三五”国家科技重大专项“渤海油田加密调整及提高采收率油藏工程技术示范”(编号:2016ZX05058001)资助
详细信息
    作者简介:

    葛丽珍(1973-),女,天津塘沽人,1996年毕业于石油大学(华东)油藏工程专业,2008年获中国石油大学(华东)地质资源与地质工程专业硕士学位,正高级工程师,主要从事油气田开发方面的研究工作。E-mail:gelzh2@cnooc.com.cn

  • 中图分类号: TE341

Research on the Perforation Avoidance Principle for Strong Water-Flooded Layers with High Water Cut in the S Oilfield of Bohai

  • 摘要:

    S油田经长期水驱开发,强水淹层段显著增加,传统水淹层划分方法及相应的射孔原则已无法满足当前阶段开发需求。为此,以室内物理模拟试验和测井解释结果为基础,利用渗流阻力系数和低效注入水定量评价方法,分析了因驱油效率差异引起的动态干扰界限:驱油效率大于30%时,含水差异引起的层间干扰较小;驱油效率为40%~45%时,低效、无效水循环加剧。根据驱油效率差异引起的动态干扰界限,提出了适用于S油田高含水期的水淹级别划分类型,在此基础上,制定了以驱油效率干扰界限为核心的射孔原则:高含水期油田水淹级别为Ⅰ级至Ⅴ级时,除工程因素外无需避射;当水淹级别为Ⅵ级时,需采取避射措施。S油田调整井应用根据该原则制定的射孔方案后,油井含水率平均下降8百分点,取得了较好的开发效果。研究结果表明,上述避射原则可以避开注入水无效循环的强水淹层,可以指导强水淹级别下储层射孔方案的制定。

    Abstract:

    After long-term development by water flooding, the highly water-flooded layer number has significantly increased in the S Oilfield. In this case, the traditional classification water-flooded layer method with the corresponding perforation principle can no longer meet the needs of current development. Therefore, the dynamic interference limit triggered by the difference in displacement efficiency was analyzed by utilizing the seepage resistance coefficient and the quantitative evaluation method of low-efficiency water injection. This work was conducted on the basis of the indoor physical model test and logging interpretation results. When the displacement efficiency was greater than 30%, the interlayer interference caused by the water cut difference was small, but when the displacement efficiency was 40%–45%, inefficient and ineffective water circulation was aggravated. Considering the above dynamic interference limit, a suitable classification type was proposed for the water flooded level in the high water cut period in the S Oilfield of Bohai. On this basis, a perforation principle was established with the interference limit of displacement efficiency as the core: In the high water cut period, there was no need to avoid perforation except for engineering factors when the water flooded level was from I to V. As the water flooded level reaches VI, perforation avoidance measures should be taken. After implemented the perforation scheme made according to the proposed perforation principle in the adjustment wells in the S Oilfield, the water cut was reduced by 8 percent points on average, which indicated good results.The research results demonstrate that the perforation avoidance principle above can avoid the strong water flooded layer with ineffective circulation of injected water, and can guide the formulation of the perforation scheme for reservoir with strong water flooded level.

  • 水驱油田开发后期,油田主力层普遍水淹,呈现出底部、中部、顶部水淹以及多段水淹等多种水淹模式[1-3]。如何精准表征储层中的水淹层,是制定高含水阶段射孔原则的基础。水淹层解释方法一般以阿奇公式为基础,结合储层物性以及动态资料,反演计算表征水淹层的参数,达到定量表征水淹级别的目的[4-5]。由于储层具有非均质性,各主力层驱替程度不一,高含水期驱油效率多分布在10%~45%,存在较大的提升空间[6-8]。S油田位于渤海辽东湾海域,为大型披覆背斜整装稠油油田,其沉积类型为三角洲前缘沉积,平均渗透率2 800 mD,平均孔隙度32%,黏度分布在24~425 mPa·s。在一次综合调整时期,以测井解释资料为基础,划分了水淹级别类型,制定了适当避射强水淹层的射孔原则以降低层间干扰、扩大波及体积[9]。近年来,国内外学者主要开展了变密度射孔、边底水油藏避射等技术研究,为控制含水率上升、提高开发效果提供了理论基础[10-14],但针对常规水驱油藏强水淹层级别细化以及相应避射原则的研究较少。同时,经长期注水开发后,储层渗流阻力发生改变,而针对此情形射孔原则的研究也较为少见。因此,对于S油田长期水驱开发、强水淹层段显著增加的问题,传统水淹层级别划分与基于传统水淹级别的射孔原则已不能适用于当前开发阶段调整井射孔需求。如何细化水淹级别划分进而有效避射,直接决定了油井投产初期的产能、含水率的上升速度、油藏的采收率和经济效益。

    为此,笔者以室内试验和测井解释资料为基础,在分析传统水淹级别划分的基础上,利用渗流阻力系数、低效注入水定量评价射孔驱油效率界限,建立了不同黏度下高含水阶段水淹级别的细化划分标准,以指导强水淹级别下储层射孔方案的制定。

    一次综合调整时期,S油田采用电阻率反演法解释水淹层,计算驱油效率的公式为 [15-17]

    η=SoiˉSoSoi×100% (1)

    式中:η为驱油效率,%;Soi为原始含油饱和度;ˉSo为目前平均含油饱和度。

    依照测井解释规范[18],S油田不同区块原油黏度差异较大,高部位和低部位对应的平均黏度分别为60和150 mPa·s,结合实际生产情况,针对上述2种地层原油黏度分别制定了水淹级别划分标准(见表1)。在中低含水阶段,采用对未水淹和中低水淹层射孔,避射强水淹层的射孔原则。

    表  1  S油田一次综合调整时期传统水淹级别划分
    Table  1.  Traditional classification of water flooded level in primary comprehensive adjustment period of S Oilfield
    水淹级别驱油效率,%含水率,%是否避射
    黏度60 mPa·s黏度150 mPa·s
    未水淹<10<3<10
    低水淹10~143~910~60
    中水淹14~209~1560~80
    强水淹>20>15>80
    下载: 导出CSV 
    | 显示表格

    为明确高含水阶段不同注入量下含水率和驱油效率的变化规律,分析了S油田大量岩心水驱油一维物理模拟试验数据,结果见图1图2。从图1可以看出,驱油效率升高的阶段主要在高含水阶段,含水率达到80%后驱油效率呈现快速增加的趋势。从图2可以看出,随着注入量增加,含水率增加幅度较小,敏感性变弱;随着注入量增加驱油效率大幅提升,敏感性变强。

    图  2  含水率、驱油效率与注入量的关系
    Figure  2.  Relationships of water cut and displacement efficiency with injected pore volume multiple
    图  1  含水率与驱油效率的关系
    Figure  1.  Relationship between water cut and displacement efficiency

    由水驱油试验结果可知,含水率达到80%以上时,驱油效率仍有较大提升空间,但根据现有水淹级别划分标准与避射原则,对含水率>80%储层采取避射,不利于充分发挥储层开发潜力。目前S油田已进入高含水率、高采出程度的开发阶段,储层普遍水淹且强水淹比例较高,充分考虑强水淹层的驱油效率提升,将有助于最大限度挖掘油田潜力。

    长期水驱开发后,多层合采导致层间、层内驱替不均,驱油效率级差大。多层合采时,在驱油效率高的水淹层段易形成优势渗流通道,导致低驱油效率层段动用差,造成动态干扰。高含水后期,影响渗流阻力变化的主要因素是相对渗透率和油水黏度。因此,基于油水渗流理论求解油水两相渗流阻力,利用渗流阻力系数进一步量化驱油效率避射界限。一维两相渗流的达西公式可表示为:

    Ql=AKKroΔpμoL+AKKrwΔpμwL (2)

    根据等值渗流阻力法原理,可得:

    Ql=ΔpLAK/(μoKro+μwKrw)=AKLΔp1/(μoKro+μwKrw) (3)

    式中:Ql为产液量,m3/d;A为截面积,m2L为长度,m;K为有效渗透率,mD;△p为生产压差,MPa;Kro为油相相对渗透率;Krw为水相相对渗透率;μo为原油黏度,mPa·s;μw为地层水黏度,mPa·s。

    渗流阻力系数α可表示为:

    α=1μoKro+μwKrw (4)

    根据式(1)和式(4),绘制渗流阻力系数和驱油效率的关系曲线,结果见图3。从图3可以看出,驱油效率变化分为2个阶段:在阶段Ⅰ中,驱油效率随渗流阻力系数下降有明显增加,此时可通过降低阻力系数提高驱油效率;在阶段Ⅱ中,驱油效率随渗流阻力系数下降变化趋缓,说明此时阻力系数不再是影响驱油效率的主控因素。

    图  3  驱油效率与阻力系数的关系
    Figure  3.  Relationship between displacement efficiency and resistance coefficient

    为进一步识别驱油效率增幅趋缓界限,绘制了驱油效率与阻力系数导数关系曲线,结果见图4。从图4可以看出,当驱油效率达到35%~40%后,阻力系数导数变化微小,驱油效率不再因含水率上升而变化,即驱油效率的干扰界限为35%~40%。

    图  4  驱油效率与阻力系数导数的关系
    Figure  4.  Relationship between oil displacement efficiency and resistance coefficient derivative

    当流体黏度一定时,渗流阻力系数主要受渗透率影响,参考渗透率突进系数评价方法[5],提出采用阻力突进系数表征干扰强度。阻力突进系数的定义为:

    Ti = ˉαiαmin (5)

    式中:Ti为阻力突进系数;\bar \alpha_{\rm{i}}αmin分别为储层平均阻力系数和最小阻力系数,mD/(mPa·s)。

    根据式(5)绘制了阻力突进系数与驱油效率的关系曲线,如图5所示。从图5可以看出:Ti越大,强水淹段越易干扰其他储层段;当Ti>10时,曲线快速变化,干扰严重;当3Ti10时,曲线变化趋于平缓,干扰较为明显;当Ti<3时,曲线变化不明显,干扰几乎消失。

    图  5  不同驱油效率下阻力突进系数
    Figure  5.  Resistance breakthrough coefficient under different displacement efficiencies

    注水效率是指注入1倍孔隙体积水的驱油效率增加值[19-21],其小于5%时表示注入水在储层中的循环为低效循环。

    结合S油田主力层渗透率和流体性质,选取S油田原油黏度为60 mPa·s的驱油效率试验结果,绘制了不同渗透率岩心注水效率与驱油效率的关系曲线,如图6所示。从图6可以看出,随着驱油效率不断提高,注水效率明显降低,当驱油效率超过40%~45%后,注水效率降至5%以下,注入水无效循环加剧。

    图  6  不同渗透率岩心注水效率与驱油效率的关系
    Figure  6.  Relationship between water injection efficiency and displacement efficiency of cores with different permeability

    综上所述,岩心驱油效率达到40%后,注水效率明显降低,易动用剩余油驱替较为均匀,注入水对难动用剩余油驱替效果明显降低,注入水易形成低效循环。

    S油田不同区块原油黏度差异较大,黏度不同也会导致干扰界限和注入水低效循环驱油效率界限存在差异。

    结合稠油油藏高含水期开发规律,主要考虑消除注入水低效循环。当注水效率在5%左右时,注水效率曲线出现明显拐点,驱油效率大于该拐点后,则出现注入水低效循环,故以该拐点作为驱油效率界限。分析不同黏度原油注水效率与驱油效率的关系可知,高部位注入水低效循环的驱油效率界限为45%,低部位注入水低效循环的驱油效率界限为35%(见图7)。

    图  7  不同黏度原油注水效率与驱油效率的关系
    Figure  7.  Relationship between water injection efficiency and displacement efficiency of crude oil with different viscosity

    为提高水淹程度的评价质量,基于以上驱油效率差异和注入水低效循环研究,结合传统水淹级别类型,将含水率超过80%的强水淹级别细化为4个级别,制定了S油田整体水淹状况下的水淹级别划分标准,见表2

    表  2  S油田水淹级别精细划分标准
    Table  2.  Fine classification of water flooded level in S Oilfield
    水淹级别含水率,
    %
    驱油效率,%是否避射
    黏度150 mPa·s黏度60 mPa·s
    I<60<14<20
    II60~8014~1820~25
    III>8018~2125~30
    IV21~2529~35
    V25~3535~45
    VI>35>45
    下载: 导出CSV 
    | 显示表格

    基于水淹级别划分标准,制定S油田强水淹层避射原则:对该油田构造高部位驱油效率在30%~45%的层段射孔,驱油效率大于45%层段采取避射措施;对该油田构造低部位区域驱油效率在20%~35%的层段射孔,驱油效率大于35%层段采取避射措施。施工过程中,防砂段间需保证一定间隔距离,可基于工程需要避射一定厚度油层。

    G1S2井位于S油田低部位,钻遇油层52.5 m,地层原油黏度150 mPa·s,因原井出砂侧钻,侧钻前含水率94%,日产油量8 m3。按照水淹级别分类,钻遇油层中强水淹层占比为47%,强水淹层中III、IV、V、VI级占比分别为10%、13%、15%、62%。该井的射孔方案为:对驱油效率大于35%的层段采取避射措施,除工程原因牺牲油层外,其余层段全部射开,如图8所示。

    图  8  G1S2井射孔方案示意
    Figure  8.  Perforation scheme of Well G1S2

    投产后,G1S2井含水率85%,日产油量55 m3,含水率84%,与侧钻前相比含水率下降10百分点,日产油量增加近47 m3,控水增油效果显著(见图9)。

    图  9  G1S2井生产曲线
    Figure  9.  Production curve of Well G1S2

    截至目前,S油田近3年在10口侧钻定向井根据上述避射原则射孔,与侧钻前相比,平均含水率降低8百分点,投产初期日增油量达200 m3,累计增油量达7.24 \times 104 m3,取得了较好的开发效果。

    1)基于渗流阻力系数和注入水低效循环量化评价,综合判断得到原油黏度分别为60和150 mPa·s时,驱油效率大于45%和35%的层段易形成优势渗流通道,在多层合采时干扰低驱油效率层段。

    2)针对高含水后期开发阶段油田,将强水淹层段细分为4个级别,结合中低水淹级别划分类型,将S油田水淹级别细化为6级(Ⅰ、Ⅱ、III、IV、V、Ⅵ)。驱油效率界限受原油黏度差异影响,针对不同黏度原油的避射原则为:对于黏度60 mPa·s的原油,避射驱油效率大于45%的层段;对于黏度150 mPa·s的原油,避射驱油效率大于35%的层段。

    3)高含水阶段稠油油藏驱油效率具有较大提升空间,避射仅是提高低动用储层驱油效率的手段之一,综合利用调剖调驱、卡水、提高有效驱替压力梯度等手段,可进一步改善油田开发效果。

  • 图  2   含水率、驱油效率与注入量的关系

    Figure  2.   Relationships of water cut and displacement efficiency with injected pore volume multiple

    图  1   含水率与驱油效率的关系

    Figure  1.   Relationship between water cut and displacement efficiency

    图  3   驱油效率与阻力系数的关系

    Figure  3.   Relationship between displacement efficiency and resistance coefficient

    图  4   驱油效率与阻力系数导数的关系

    Figure  4.   Relationship between oil displacement efficiency and resistance coefficient derivative

    图  5   不同驱油效率下阻力突进系数

    Figure  5.   Resistance breakthrough coefficient under different displacement efficiencies

    图  6   不同渗透率岩心注水效率与驱油效率的关系

    Figure  6.   Relationship between water injection efficiency and displacement efficiency of cores with different permeability

    图  7   不同黏度原油注水效率与驱油效率的关系

    Figure  7.   Relationship between water injection efficiency and displacement efficiency of crude oil with different viscosity

    图  8   G1S2井射孔方案示意

    Figure  8.   Perforation scheme of Well G1S2

    图  9   G1S2井生产曲线

    Figure  9.   Production curve of Well G1S2

    表  1   S油田一次综合调整时期传统水淹级别划分

    Table  1   Traditional classification of water flooded level in primary comprehensive adjustment period of S Oilfield

    水淹级别驱油效率,%含水率,%是否避射
    黏度60 mPa·s黏度150 mPa·s
    未水淹<10<3<10
    低水淹10~143~910~60
    中水淹14~209~1560~80
    强水淹>20>15>80
    下载: 导出CSV

    表  2   S油田水淹级别精细划分标准

    Table  2   Fine classification of water flooded level in S Oilfield

    水淹级别含水率,
    %
    驱油效率,%是否避射
    黏度150 mPa·s黏度60 mPa·s
    I<60<14<20
    II60~8014~1820~25
    III>8018~2125~30
    IV21~2529~35
    V25~3535~45
    VI>35>45
    下载: 导出CSV
  • [1] 胡治华,杨庆红,申春生,等. 稠油油田高含水期剩余油分布规律及挖潜策略:以渤海SZ油田为例[J]. 断块油气田,2013,20(6):748–751.

    HU Zhihua, YANG Qinghong, SHEN Chunsheng, et al. Distribution rule and development strategy of remaining oil at the high water-cut stage in heavy oilfield: Taking SZ Oilfield in Bohai Bay as an example[J]. Fault-Block Oil & Gas Field, 2013, 20(6): 748–751.

    [2] 陈泓州,刘巧. 克拉玛依油田XX区稠油水淹层水淹标准定性判别研究[J]. 国外测井技术,2011(1):45–47.

    CHEN Hongzhou, LIU Qiao. Qualitative identification of waterflooding for water-flooded zones in XX Oilfield zone thick oil block of Qaramay Oilfield[J]. World Well Logging Technology, 2011(1): 45–47.

    [3] 张俊峰,宋自恒,王军,等. 马厂油田油层水淹级别划分方法与标准[J]. 石油天然气学报(江汉石油学院学报),2006,28(2):79–81.

    ZHANG Junfeng, SONG Ziheng, WANG Jun, et al. Classification method and standard of reservoir water flooded level in Machang Oilfield[J]. Journal of Oil and Gas Technology(Journal of Jianghan Petroleum Institute), 2006, 28(2): 79–81.

    [4] 丁圣,周志峰. 基于改进型阿奇公式法定量评价水淹层[J]. 断块油气田,2016,23(5):599–602.

    DING Sheng, ZHOU Zhifeng. Quantitative evaluation of water flooded layer based on modified Archie model[J]. Fault-Block Oil & Gas Field, 2016, 23(5): 599–602.

    [5] 彭寿昌,许长福,张强,等. 低渗透砾岩油藏含油饱和度解释及水淹层评价[J]. 特种油气藏,2015,22(6):108–110. doi: 10.3969/j.issn.1006-6535.2015.06.024

    PENG Shouchang, XU Changfu, ZHANG Qiang, et al. Oil saturation interpretation and watered-out zone evaluation of low permeability conglomerate reservoir[J]. Special Oil & Gas Reservoirs, 2015, 22(6): 108–110. doi: 10.3969/j.issn.1006-6535.2015.06.024

    [6] 纪淑红,田昌炳,石成方,等. 高含水阶段重新认识水驱油效率[J]. 石油勘探与开发,2012,39(3):338–345.

    JI Shuhong, TIAN Changbing, SHI Chengfang, et al. New understanding on water-oil displacement efficiency in a high water-cut stage[J]. Petroleum Exploration and Development, 2012, 39(3): 338–345.

    [7] 王朝明,孔令军,袁凯旋,等. 特高含水后期油藏水驱效果评价方法[J]. 石油钻探技术,2020,48(3):108–113. doi: 10.11911/syztjs.2020020

    WANG Chaoming, KONG Lingjun, YUAN Kaixuan, et al. Evaluation method of water flooding effect in reservoirs with ultra-high water cut[J]. Petroleum Drilling Techniques, 2020, 48(3): 108–113. doi: 10.11911/syztjs.2020020

    [8] 鲁瑞彬,胡琳,刘双琪,等. 水驱油高倍驱替实验驱油效率计算新方法[J]. 断块油气田,2019,26(5):601–604.

    LU Ruibin, HU Lin, LIU Shuangqi, et al. A new method for calculating oil displacement efficiency of high water flooding displacement experiment[J]. Fault-Block Oil & Gas Field, 2019, 26(5): 601–604.

    [9] 任晓宁,王国栋,刘英宪. S油田首次调整油层打开程度优化研究与实践[J]. 石油地质与工程,2012,26(5):70–72. doi: 10.3969/j.issn.1673-8217.2012.05.020

    REN Xiaoning, WANG Guodong, LIU Yingxian. Study and practice on optimization of reservoir open degree for the first time[J]. Petroleum Geology and Engineering, 2012, 26(5): 70–72. doi: 10.3969/j.issn.1673-8217.2012.05.020

    [10] 周浪,李海涛. 底水油藏中水平井分段射孔和打开程度的优化设计[J]. 重庆科技学院学报(自然科学版),2009,11(1):32–34.

    ZHOU Lang, LI Haitao. Optimization design of perforation location and digging degree of level well in bottom water reservoir[J]. Journal of Chongqing University of Science and Technology(Natural Sciences Edition), 2009, 11(1): 32–34.

    [11] 周泓宇,万小进,吴绍伟,等. 水平井控水砾石充填防砂技术研究[J]. 石油钻探技术,2021,49(1):101–106. doi: 10.11911/syztjs.2020138

    ZHOU Hongyu, WAN Xiaojin, WU Shaowei, et al. Study on the sand control technique for gravel packing with water control for horizontal wells[J]. Petroleum Drilling Techniques, 2021, 49(1): 101–106. doi: 10.11911/syztjs.2020138

    [12] 何芬,李涛,苏彦春,等. 海上油田射孔方案优化研究及应用效果[J]. 科学技术与工程,2014,14(27):198–201. doi: 10.3969/j.issn.1671-1815.2014.27.039

    HE Fen, LI Tao, SU Yanchun, et al. Offshore oilfield perforation scheme optimization research and application[J]. Science Technology and Engineering, 2014, 14(27): 198–201. doi: 10.3969/j.issn.1671-1815.2014.27.039

    [13] 呙义,高晓飞,易会安,等. 海上油田全寿命控水完井技术研究及现场试验[J]. 石油钻探技术,2021,49(6):93–98. doi: 10.11911/syztjs.2021120

    GUO Yi, GAO Xiaofei, YI Huian, et al. Research and field test on Life-Long water control completion technology in offshore oilfields[J]. Petroleum Drilling Techniques, 2021, 49(6): 93–98. doi: 10.11911/syztjs.2021120

    [14] 张晓诚,李进,韩耀图,等. 渤海油田水淹层控水射孔技术[J]. 断块油气田,2020,27(6):812–816.

    ZHANG Xiaocheng, LI Jin, HAN Yaotu, et al. Technology of water control and perforating in water flooded zone of Bohai Oilfield[J]. Fault-Block Oil & Gas Field, 2020, 27(6): 812–816.

    [15] 郭海峰,李洪奇,孟照旭,等. 基于特征选择、遗传算法和支持向量机的水淹层识别方法[J]. 石油天然气学报,2008,30(6):94–99. doi: 10.3969/j.issn.1000-9752.2008.06.019

    GUO Haifeng, LI Hongqi, MENG Zhaoxu, et al. Feature selection, genetic algorithm and support vector machine[J]. Journal of Oil and Gas Technology, 2008, 30(6): 94–99. doi: 10.3969/j.issn.1000-9752.2008.06.019

    [16] 顾保祥. 利用原始电阻率反演定量评价水淹层[J]. 中国海上油气,2009,21(2):105–108. doi: 10.3969/j.issn.1673-1506.2009.02.008

    GU Baoxiang. Quantitative evaluation of water-flooded zones by using raw resistivity inversion[J]. China Offshore Oil and Gas, 2009, 21(2): 105–108. doi: 10.3969/j.issn.1673-1506.2009.02.008

    [17] 谭伟,张恒荣,王利娟,等. 注水开发油田水淹层混合液电阻率求取新方法[J]. 石油钻探技术,2017,45(1):120–126.

    TAN Wei, ZHANG Hengrong, WANG Lijuan, et al. A new method to determine the resistivity of mixed liquids in water-flooded layers of oilfields by water-flooding development[J]. Petroleum Drilling Techniques, 2017, 45(1): 120–126.

    [18] Q/HS2086—2015 海上砂岩油田水淹层测井解释规范[S].

    Q/HS2086—2015 Subsurface study rules of development adjustment program for offshore sandstone oil-gas field[S].

    [19] 刘利清,刘培亮,蒋林. 塔河油田碳酸盐岩缝洞型油藏量化注水开发技术[J]. 石油钻探技术,2020,48(2):104–107. doi: 10.11911/syztjs.2019122

    LIU Liqing, LIU Peiliang, JIANG Lin. Quantitative water injection technology for cavernous fractured karst carbonate reservoirs in the Tahe Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 104–107. doi: 10.11911/syztjs.2019122

    [20] 刘治坤,刘超. 注水井储层注水效率评价方法研究[J]. 中国石油和化工标准与质量,2013,33(21):166. doi: 10.3969/j.issn.1673-4076.2013.21.160

    LIU Zhikun, LIU Chao. Study on evaluation method of water injection efficiency of water injection well reservoir[J]. China Petroleum and Chemical Standard and Quality, 2013, 33(21): 166. doi: 10.3969/j.issn.1673-4076.2013.21.160

    [21] 陈存良,马奎前,王相,等. 基于最大注水效率的平面均衡驱替方法[J]. 石油钻探技术,2021,49(3):124–128. doi: 10.11911/syztjs.2021028

    CHEN Cunliang, MA Kuiqian, WANG Xiang, et al. Research on the planar equilibrium displacement based on maximum water injection efficiency[J]. Petroleum Drilling Techniques, 2021, 49(3): 124–128. doi: 10.11911/syztjs.2021028

  • 期刊类型引用(3)

    1. 李敏,聂芬意,贾晨. 港西油田馆陶组水淹层地质特征. 西部探矿工程. 2024(01): 43-44+49 . 百度学术
    2. 王欣然,王艳霞,王晓超,邓景夫,李红英. 海上油田“双高”阶段低效井综合治理研究. 西南石油大学学报(自然科学版). 2024(02): 125-134 . 百度学术
    3. 李忠诚,鲍志东,王洪学,张栋. 基于高压汞灯荧光显微观测的剩余油定量分析方法. 石油钻探技术. 2024(03): 112-117 . 本站查看

    其他类型引用(1)

图(9)  /  表(2)
计量
  • 文章访问数:  279
  • HTML全文浏览量:  136
  • PDF下载量:  38
  • 被引次数: 4
出版历程
  • 收稿日期:  2021-04-22
  • 修回日期:  2022-03-14
  • 录用日期:  2022-04-26
  • 网络出版日期:  2022-05-04
  • 刊出日期:  2022-06-08

目录

/

返回文章
返回