“Casing in Casing” Mechanical Isolation Refracturing Technology in Fuling Shale Gas Wells
-
摘要:
针对涪陵页岩气田采用暂堵转向重复压裂工艺时施工难度大、增产效果不理想的问题,在调研国外页岩气井重复压裂工艺的基础上,对比分析了暂堵转向重复压裂与机械封隔重复压裂技术的原理与特点,明确了机械封隔可完全封堵初次压裂射孔炮眼,精准控制重复压裂水力裂缝起裂,形成了“套中固套”机械封隔重复压裂技术。在涪陵页岩气田JYAHF井进行了“套中固套”机械封隔重复压裂技术试验,在内径为115.0 mm的井筒中下入ϕ88.9 mm套管固井,建立全新封闭井筒,并针对不同剩余储量分布采用不同的重复压裂工艺。原井筒改造程度较高的井段,以挖潜老缝间剩余资源为目标;初次改造效果差的井段,需要恢复老缝导流能力。JYAHF井试验该技术后,可采储量增加0.36×108 m3,采收率提高4.8%。研究结果表明,“套中固套”机械封隔重复压裂技术增产效果明显,可为国内页岩气田长期高效开发提供技术支撑。
Abstract:The application of temporary plugging and diverting refracturing in Fuling Shale Gas Field brought on technical difficulties accompanied by poor production increase. To solve this problem, this paper analyzed principles and characteristics of technologies used in shale gas wells abroad. They included temporary plugging and diverting refracturing, and mechanical isolation refracturing. What was found was that that mechanical isolation could completely block the perforations and precisely control fracture initiation of hydraulic refracturing. From that, the “casing in casing” mechanical isolation refracturing technology took shape. In Fuling Shale Gas Field, this technology was tested with a casing (outer diameter of 88.9 mm) inserted into the other one (inner diameter of 115.0 mm) where in a new and closed well casing was formed. In addition, refracturing technologies targeted for different residual oil distribution in the reservoir were developed through studies. In the original well casing, attention should be paid to exploring the residual oil among fractures in the stimulated well section. At the same time,emphasis should target the poorly stimulated sections, to see how to recover the flow conductivity of the fractures. After implementing that technology in Well JYAHF, the recoverable reserve for a single well increased by 0.36×108 m3, and the recovery efficiency increased by 4.8%. The study shows that the “casing in casing” mechanical isolation refracturing technology can significantly improve the result of stimulation and provide technical support for long-term and efficient shale gas field development in China.
-
-
表 1 JYAHF井重复压裂施工参数
Table 1 Refracturing parameters of Well JYAHF
压裂段 施工压力/
MPa施工排量/
(m3·min−1)用液强度/
(m3·m−1)加砂强度/
(m3·m−1)暂堵剂
用量/kg3~12 45~82 6~10 28.6~34.8 1.6~2.0 25~250 13~21 46~77 9~12 18.3~23.4 1.4~1.8 -
[1] 任岚,黄静,赵金洲,等. 页岩气水平井重复压裂产能数值模拟[J]. 天然气勘探与开发,2019,42(2):100–106. REN Lan, HUANG Jing, ZHAO Jinzhou, et al. Numerical simulation on productivity when shale-gas horizontal-well refracturing[J]. Natural Gas Exploration and Development, 2019, 42(2): 100–106.
[2] 夏海帮. 页岩气井双暂堵压裂技术研究与现场试验[J]. 石油钻探技术,2020,48(3):90–96. doi: 10.11911/syztjs.2020065 XIA Haibang. The research and field testing of dual temporary plugging fracturing technology for shale gas wells[J]. Petroleum Drilling Techniques, 2020, 48(3): 90–96. doi: 10.11911/syztjs.2020065
[3] 王志刚. 涪陵焦石坝地区页岩气水平井压裂改造实践与认识[J]. 石油与天然气地质,2014,35(3):425–430. doi: 10.11743/ogg201418 WANG Zhigang. Practice and cognition of shale gas horizontal well fracturing stimulation in Jiaoshiba of Fuling Area[J]. Oil & Gas Geology, 2014, 35(3): 425–430. doi: 10.11743/ogg201418
[4] 肖博,李双明,蒋廷学,等. 页岩气井暂堵重复压裂技术研究进展[J]. 科学技术与工程,2020,20(24):9707–9715. doi: 10.3969/j.issn.1671-1815.2020.24.004 XIAO Bo, LI Shuangming, JIANG Tingxue, et al. Research progress on temporary-plugging refracturing technology for shale gas wells[J]. Science Technology and Engineering, 2020, 20(24): 9707–9715. doi: 10.3969/j.issn.1671-1815.2020.24.004
[5] 张永春. 泾河油田致密低渗油藏水平井重复压裂技术[J]. 断块油气田,2021,28(5):711–715. ZHANG Yongchun. Horizontal well re-fracturing technology in tight and low permeability reservoir of Jinghe Oilfield[J]. Fault-Block Oil & Gas Field, 2021, 28(5): 711–715.
[6] 蔡卓林,赵续荣,南荣丽,等. 暂堵转向结合高排量体积重复压裂技术[J]. 断块油气田,2020,27(5):661–665. CAI Zhuolin, ZHAO Xurong, NAN Rongli, et al. Volume re-fracturing technology of temporary plugging and diverting with high displacement[J]. Fault-Block Oil & Gas Field, 2020, 27(5): 661–665.
[7] 崔静,高东伟,毕文韬,等. 页岩气井重复压裂选井评价模型研究及应用[J]. 岩性油气藏,2018,30(6):145–150. doi: 10.12108/yxyqc.20180618 CUI Jing, GAO Dongwei, BI Wentao, et al. Refracturing selection evaluation model for shale gas wells and its application[J]. Lithologic Reservoirs, 2018, 30(6): 145–150. doi: 10.12108/yxyqc.20180618
[8] 王峻源,徐太平,周京伟,等. 高强度长效暂堵剂在水平井重复压裂上的应用[J]. 化工设计通讯,2020,46(8):83–85. doi: 10.3969/j.issn.1003-6490.2020.08.057 WANG Junyuan, XU Taiping, ZHOU Jingwei, et al. Application of a high-strength and long-acting temporary plugging agent in horizontal well re-fracturing[J]. Chemical Engineering Design Communications, 2020, 46(8): 83–85. doi: 10.3969/j.issn.1003-6490.2020.08.057
[9] 何海波. 致密油水平井缝网增能重复压裂技术实践[J]. 特种油气藏,2018,25(4):170–174. doi: 10.3969/j.issn.1006-6535.2018.04.034 HE Haibo. Practice of re-fracturing with network energization for horizontal well in tight oil reservoir[J]. Special Oil & Gas Reservoirs, 2018, 25(4): 170–174. doi: 10.3969/j.issn.1006-6535.2018.04.034
[10] 周丹,熊旭东,何军榜,等. 低渗透储层多级转向压裂技术[J]. 石油钻探技术,2020,48(1):85–89. doi: 10.11911/syztjs.2019077 ZHOU Dan, XIONG Xudong, HE Junbang, et al. Multi-stage deflective fracturing technology for low permeability reservoir[J]. Petroleum Drilling Techniques, 2020, 48(1): 85–89. doi: 10.11911/syztjs.2019077
[11] 马俊修,兰正凯,王丽荣,等. 有效改造体积压裂效果评价方法及应用[J]. 特种油气藏,2021,28(5):126–133. doi: 10.3969/j.issn.1006-6535.2021.05.018 MA Junxiu, LAN Zhengkai, WANG Lirong, et al. Evaluation method and application of ESRV fracturing effect[J]. Special Oil & Gas Reservoirs, 2021, 28(5): 126–133. doi: 10.3969/j.issn.1006-6535.2021.05.018
[12] 李彦超,何昀宾,肖剑锋,等. 页岩气水平井重复压裂层段优选与效果评估[J]. 天然气工业,2018,38(7):59–64. doi: 10.3787/j.issn.1000-0976.2018.07.008 LI Yanchao, HE Yunbin, XIAO Jianfeng, et al. Optimal selection and effect evaluation of re-fracturing intervals of shale-gas horizontal wells[J]. Natural Gas Industry, 2018, 38(7): 59–64. doi: 10.3787/j.issn.1000-0976.2018.07.008
[13] 赵振峰,李宪文,马新星,等. “井工厂” 压裂模式下水力裂缝动态扩展模拟分析[J]. 长江大学学报(自然科学版),2021,18(6):55–62. ZHAO Zhenfeng, LI Xianwen, MA Xinxing, et al. Simulation analysis of dynamic propagation of hydraulic fracture under“well factory”fracturing mode[J]. Journal of Yangtze University (Natural Science Edition), 2021, 18(6): 55–62.
[14] 曾波,王星皓,黄浩勇,等. 川南深层页岩气水平井体积压裂关键技术[J]. 石油钻探技术,2020,48(5):77–84. doi: 10.11911/syztjs.2020073 ZENG Bo, WANG Xinghao, HUANG Haoyong, et al. Key technology of volumetric fracturing in deep shale gas horizontal wells in Southern Sichuan[J]. Petroleum Drilling Techniques, 2020, 48(5): 77–84. doi: 10.11911/syztjs.2020073
[15] 李奎东,纪国法,刘炜,等. 页岩水平井重复压裂现地应力场计算方法[J]. 天然气勘探与开发,2020,43(3):110–118. LI Kuidong, JI Guofa, LIU Wei, et al. A method for calculating current in-situ stress field before refracturing horizontal shale wells[J]. Natural Gas Exploration and Development, 2020, 43(3): 110–118.
[16] 张炜. 深部页岩压裂缝网体积模拟及应用[J]. 石油钻采工艺,2021,43(1):97–103. ZHANG Wei. Deep shale hydraulic fracture network volume model and its application[J]. Oil Drilling & Production Technology, 2021, 43(1): 97–103.
[17] 任佳伟,王贤君,张先敏,等. 大庆致密油藏水平井重复压裂及裂缝参数优化模拟[J]. 断块油气田,2020,27(5):638–642. REN Jiawei, WANG Xianjun, ZHANG Xianmin, et al. Refracturing and fracture parameters optimization simulation for horizontal well in Daqing tight oil reservoir[J]. Fault-Block Oil & Gas Field, 2020, 27(5): 638–642.
[18] 曾凌翔,郑云川,蒲祖凤. 页岩重复压裂工艺技术研究及应用[J]. 钻采工艺,2020,43(1):65–68. doi: 10.3969/J.ISSN.1006-768X.2020.01.19 ZENG Lingxiang, ZHENG Yunchuan, PU Zufeng. Research and application of shale refracturing technology[J]. Drilling & Production Technology, 2020, 43(1): 65–68. doi: 10.3969/J.ISSN.1006-768X.2020.01.19
[19] 许建国,刘光玉,王艳玲. 致密储层缝内暂堵转向压裂工艺技术[J]. 石油钻采工艺,2021,43(3):374–378. XU Jianguo, LIU Guangyu, WANG Yanling. Intrafracture temporary plugging and diversion fracturing technology suitable for tight reservoirs[J]. Oil Drilling & Production Technology, 2021, 43(3): 374–378.
[20] 李庆辉,李少轩,刘伟洲. 深层页岩气储层岩石力学特性及对压裂改造的影响[J]. 特种油气藏,2021,28(3):130–138. doi: 10.3969/j.issn.1006-6535.2021.03.020 LI Qinghui, LI Shaoxuan, LIU Weizhou. Rock mechanical properties of deep shale gas reservoirs and their influence on fracturing stimulation[J]. Special Oil & Gas Reservoirs, 2021, 28(3): 130–138. doi: 10.3969/j.issn.1006-6535.2021.03.020
[21] 李宪文,刘顺,陈强,等. 考虑复杂裂缝网络的致密油藏水平井体积压裂改造效果评价[J]. 石油钻探技术,2019,47(6):73–82. doi: 10.11911/syztjs.2019126 LI Xianwen, LIU Shun, CHEN Qiang, et al. An evaluation of the stimulation effect of horizontal well volumetric fracturing in tight reservoirs with complex fracture networks[J]. Petroleum Drilling Techniques, 2019, 47(6): 73–82. doi: 10.11911/syztjs.2019126
-
期刊类型引用(3)
1. 苏超, 吴亮, 张卓, 陈洪地. 页岩气返排测试过程中防砂控砂技术浅析. 非常规油气. 2018(01): 76-79 . 百度学术
2. 苏超, 吴亮, 张卓, 陈洪地. 页岩气返排测试过程中防砂控砂技术浅析. 非常规油气. 2018(02): 94-97 . 百度学术
3. 李川, 张翔, 杜现飞, 唐梅荣, 王广涛, 李昌恒. 鄂尔多斯盆地致密油应力循环压裂技术. 石油钻采工艺. 2018(04): 494-498 . 百度学术
其他类型引用(2)