膨胀波纹管焊接工艺及焊缝膨胀性能分析

王建军, 陶兴华, 邹勇, 薛龙

王建军, 陶兴华, 邹勇, 薛龙. 膨胀波纹管焊接工艺及焊缝膨胀性能分析[J]. 石油钻探技术, 2022, 50(3): 61-65. DOI: 10.11911/syztjs.2022008
引用本文: 王建军, 陶兴华, 邹勇, 薛龙. 膨胀波纹管焊接工艺及焊缝膨胀性能分析[J]. 石油钻探技术, 2022, 50(3): 61-65. DOI: 10.11911/syztjs.2022008
WANG Jianjun, TAO Xinghua, ZOU Yong, XUE Long. Analysis of Welding Technology and Weld Expansion Performance on Expandable Profile Liner[J]. Petroleum Drilling Techniques, 2022, 50(3): 61-65. DOI: 10.11911/syztjs.2022008
Citation: WANG Jianjun, TAO Xinghua, ZOU Yong, XUE Long. Analysis of Welding Technology and Weld Expansion Performance on Expandable Profile Liner[J]. Petroleum Drilling Techniques, 2022, 50(3): 61-65. DOI: 10.11911/syztjs.2022008

膨胀波纹管焊接工艺及焊缝膨胀性能分析

基金项目: 国家重点研发计划项目“强辐射条件下拆解机器人系统设计集成与试验验证”(编号:2019YFB1310805)资助
详细信息
    作者简介:

    王建军(1971—),男,甘肃兰州人,1993年毕业于甘肃工业大学流体机械专业,正高级工程师,主要从事石油化工工程及项目管理工作。E-mail: wangjj.swuj@sinopec.com。

  • 中图分类号: TE931+.2

Analysis of Welding Technology and Weld Expansion Performance on Expandable Profile Liner

  • 摘要:

    膨胀波纹管通过焊接连接在一起,焊缝的膨胀性能直接决定膨胀波纹管整体的膨胀性能。为了解焊缝的膨胀性能,在介绍手工焊和自动焊2类膨胀波纹管焊接工艺的基础上,利用弹塑性力学及有限元法模拟了ϕ149.2 mm 8字形膨胀波纹管焊缝的膨胀过程、分析了焊缝的膨胀性能,并通过膨胀波纹管的试验井试验和现场试验进行了验证。由模拟分析及试验可知:膨胀波纹管膨胀过程中焊缝应力和应变最大点在波谷处的管壁外侧;焊缝和膨胀波纹管本体的应力和应变随内压变化的规律相同,焊缝的应力和应变始终大于膨胀波纹管本体,加压至30 MPa时ϕ149.2 mm 8字形膨胀波纹管及焊缝依然在安全范围内;ϕ149.2 mm 8字形膨胀波纹管采用液压膨胀方式加压至18 MPa即满足机械膨胀要求。研究结果表明,采用现有焊接工艺获得的焊缝满足现场膨胀需求,通过模拟获得的膨胀过程中膨胀波纹管焊缝应力和应变的变化规律与试验结果基本吻合,这对现场应用膨胀波纹管具有一定的指导作用。

    Abstract:

    Because expandable profile liners (EPLs) are connected by welding, their overall expansion performance is a function of weld expansion performance. To understand the weld expansion performance, two kinds of EPL welding technologies, namely, manual welding and automatic welding, were outlined. The weld expansion process of an 8-shaped EPL with a diameter of ϕ149.2 mm was simulated by the finite-element method in light of elastic-plastic mechanics. The weld expansion performance was then analyzed and verified by EPL test well and field tests. The following results were obtained from simulation analyses and tests. The points of maximum weld stress and strain during EPL expansion occurred on the EPL outer wall. It was noted that variation laws of weld stress and strain with internal pressure were similar to those of EPL body stress and strain, although the weld stress and strain were higher than EPL body stress and strain during the whole process. The 8-shaped EPL with a diameter of ϕ149.2 mm and the weld were still in the safe range when the EPL was pressurized to 30 MPa. The mechanical expansion requirements were satisfied when the EPL was pressurized to 18 MPa by hydraulic expansion. The results showed that welds obtained by existing welding technologies could meet the field expansion requirements. The variation laws of weld stress and strain of EPL obtained by simulation were consistent with the test results. This research can guide the field application of EPLs.

  • 图  1   自动焊接机构

    Figure  1.   Automatic welding mechanism

    图  2   膨胀波纹管截面结构

    Figure  2.   Section structure of EPL

    图  3   井眼和膨胀波纹管的数值模型

    Figure  3.   Numerical model of the wellbore and EPL

    图  4   膨胀后焊缝的等效应力和应变云图

    Figure  4.   Equivalent stress and strain nephogram of the weld after expansion

    图  5   膨胀波纹管本体及焊缝的等效应力和等效塑性应随内压变化的曲线

    Figure  5.   Variation curves of equivalent stress and equivalent plastic strain of the EPL body and weld with internal pressure

    图  6   膨胀波纹管试样

    Figure  6.   EPL sample

    图  7   膨胀波纹管试样膨胀后的外观

    Figure  7.   Appearance of the EPL sample after expansion

    表  1   自动焊的工艺参数

    Table  1   Technical parameters of automatic welding

    焊道顺序焊层焊接电流/
    A
    焊接电压/
    V
    焊接速度/
    (mm·min−1
    保护气流量/
    (L·min−1
    1根焊115~12519.6~20.5240~28018~20
    2盖面焊130~13820.8~21.5250~30018~20
    3盖面焊135~14521.3~22.2250~30018~20
    下载: 导出CSV

    表  2   膨胀波纹管膨胀过程中的形状参数

    Table  2   Shape parameters of the EPL during expansion

    序号压力/MPa大径/mm小径/mm绝对偏差/mm相对偏差,%
    110.00167.0150.017.010.18
    220.00168.0151.017.010.12
    330.00169.0161.08.04.73
    440.67175.5173.61.91.08
    下载: 导出CSV
  • [1] 陶兴华,马开华,吴波,等. 膨胀波纹管技术现场试验综述及存在问题分析[J]. 石油钻探技术,2007,35(4):63–66. doi: 10.3969/j.issn.1001-0890.2007.04.019

    TAO Xinghua, MA Kaihua, WU Bo, et al. Summary of expandable bellows field test and existing problem analysis[J]. Petroleum Drilling Techniques, 2007, 35(4): 63–66. doi: 10.3969/j.issn.1001-0890.2007.04.019

    [2] 马汝涛,罗淮东,徐丙贵,等. 可膨胀波纹管截面设计计算与评估方法[J]. 石油机械,2019,47(3):14–18.

    MA Rutao, LUO Huaidong, XU Binggui, et al. Cross-section design and evaluation methods for expansion bellows[J]. China Petroleum Machinery, 2019, 47(3): 14–18.

    [3] 张辉,王锦昌,王翔,等. 膨胀波纹管技术在大斜度井易垮塌地层的应用[J]. 断块油气田,2015,22(3):394–397.

    ZHANG Hui, WANG Jinchang, WANG Xiang, et al. Application of expandable convoluted tubing technique in easy collapsed formation of highly deviated well[J]. Fault-Block Oil & Gas Field, 2015, 22(3): 394–397.

    [4] 陶兴华,朱宏武,曾义金,等. 膨胀波纹管焊接机器人的研制及其机构运动分析[J]. 中国石油大学学报(自然科学版),2011,35(4):119–122.

    TAO Xinghua, ZHU Hongwu, ZENG Yijin, et al. Development and mechanism motion analysis of welding robot for expandable profile liner[J]. Journal of China University of Petroleum (Edition of Natural Science), 2011, 35(4): 119–122.

    [5] 徐立力,薛龙,陶兴华,等. 异型断面管道自动焊接执行机构设计及运动仿真[J]. 电焊机,2011,41(5):5–9. doi: 10.3969/j.issn.1001-2303.2011.05.002

    XU Lili, XUE Long, TAO Xinghua, et al. Design and motion simulation of automatic welding actuator for special-shaped pipeline welding robot[J]. Electric Welding Machine, 2011, 41(5): 5–9. doi: 10.3969/j.issn.1001-2303.2011.05.002

    [6] 刘鹏,陶兴华,胡彦峰,等. 提高膨胀波纹管在弯曲井眼中应用可靠性研究[J]. 石油钻采工艺,2019,41(2):170–177.

    LIU Peng, TAO Xinghua, HU Yanfeng, et al. Research on reliability improving of expandable bellow application in crooked holes[J]. Oil Drilling & Production Technology, 2019, 41(2): 170–177.

    [7] 刘鹏,陶兴华,王立双. 可膨胀异型管焊接技术研究[J]. 焊接,2019(6):34–37.

    LIU Peng, TAO Xinghua, WANG Lishuang. Welding technology of expandable special section tube[J]. Welding & Joining, 2019(6): 34–37.

    [8] 刘鹏,夏柏如,陶兴华,等. 膨胀波纹管焊缝缺陷的检测及影响评价分析[J]. 科学技术与工程,2016,16(32):22–27,79. doi: 10.3969/j.issn.1671-1815.2016.32.004

    LIU Peng, XIA Bairu, TAO Xinghua, et al. Weld defects detection and weld's performance evaluation of solid expandable profile liner technology[J]. Science Technology and Engineering, 2016, 16(32): 22–27,79. doi: 10.3969/j.issn.1671-1815.2016.32.004

    [9] 郭强,张德龙,黄玉文,等. 可膨胀波纹管水力膨胀力学特性研究[J]. 探矿工程(岩土钻掘工程),2019,46(12):50–55.

    GUO Qiang, ZHANG Delong, HUANG Yuwen, et al. Research on mechanical properties of expandable profile liners under hydraulic expansion[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling), 2019, 46(12): 50–55.

    [10] 刘晓丹,陶兴华,韩振强. 振动时效工艺在消除膨胀波纹管残余应力中的应用[J]. 振动与冲击,2015,34(4):171–174.

    LIU Xiaodan, TAO Xinghua, HAN Zhenqiang. Application of vibratory stress relief in relaxation of residual stress for expandable corrugated liners[J]. Journal of Vibration and Shock, 2015, 34(4): 171–174.

    [11] 李虎,段庆全,朱冰冰,等. 膨胀波纹管抗外挤强度的影响因素分析[J]. 焊管,2017,40(3):1–4.

    LI Hu, DUAN Qingquan, ZHU Bingbing, et al. Influence factors analysis of expansion bellows collapse resistance strength[J]. Welded Pipe and Tube, 2017, 40(3): 1–4.

    [12] 张会会,段庆全,朱冰冰,等. 弯曲井段下波纹管膨胀性能分析[J]. 石油机械,2017,45(7):78–82.

    ZHANG Huihui, DUAN Qingquan, ZHU Bingbing, et al. Analysis of bellows expansion performance in curved well section[J]. China Petroleum Machinery, 2017, 45(7): 78–82.

    [13] 涂玉林,杨红歧,胡彦峰,等. 膨胀波纹管在小井眼的安全应用工况模拟试验研究[J]. 石油钻探技术,2018,46(2):69–74.

    TU Yulin, YANG Hongqi, HU Yanfeng, et al. Simulation and experimental study on the safe application condition of expandable profile liner in slim holes[J]. Petroleum Drilling Techniques, 2018, 46(2): 69–74.

  • 期刊类型引用(10)

    1. Hong-Yan Qu,Jian-Long Zhang,Fu-Jian Zhou,Yan Peng,Zhe-Jun Pan,Xin-Yao Wu. Evaluation of hydraulic fracturing of horizontal wells in tight reservoirs based on the deep neural network with physical constraints. Petroleum Science. 2023(02): 1129-1141 . 必应学术
    2. 刘彦昌,于东博,孔维芳,单立群,孙明港. 基于偏心电位法井间压裂裂缝动态分析研究. 自动化与仪器仪表. 2022(05): 21-26 . 百度学术
    3. 周健,曾义金,陈作,张保平,徐胜强. 青海共和盆地干热岩压裂裂缝测斜仪监测研究. 石油钻探技术. 2021(01): 88-92 . 本站查看
    4. 徐胜强,张旭东,张保平,周健. 测斜仪监测技术在共和盆地干热岩井压裂中的应用研究. 钻探工程. 2021(02): 42-48 . 百度学术
    5. 沈骋,赵金洲,谢军,范宇,宋毅. 海相页岩缝网可压性靶窗空间分布预测——以川南长宁区块为例. 地质力学学报. 2020(06): 881-891 . 百度学术
    6. 左立娜,袁和平,刘志娟,盛守东,才辉,王鹏. 压裂裂缝地面微地震监测技术. 油气井测试. 2019(03): 61-66 . 百度学术
    7. 杨晓丁,梁华庆,耿敏,沈维. 基于Comsol的电位法压裂裂缝监测正演研究. 计算机测量与控制. 2016(09): 54-57 . 百度学术
    8. 刘旭礼. 井下微地震监测技术在页岩气“井工厂”压裂中的应用. 石油钻探技术. 2016(04): 102-107 . 本站查看
    9. 陈作,周健,张旭,吴春方,张啸宇. 致密砂岩水平井组同步压裂过程中诱导应力场变化规律. 石油钻探技术. 2016(06): 78-83 . 本站查看
    10. 曾义金,郭印同,杨春和. 压裂过程中地面和井下倾斜场的主控因素研究. 岩土力学. 2016(S1): 79-87 . 百度学术

    其他类型引用(8)

图(7)  /  表(2)
计量
  • 文章访问数:  321
  • HTML全文浏览量:  197
  • PDF下载量:  49
  • 被引次数: 18
出版历程
  • 收稿日期:  2021-10-19
  • 修回日期:  2022-01-04
  • 网络出版日期:  2022-04-24
  • 刊出日期:  2022-06-08

目录

    /

    返回文章
    返回