The Up-to-Date Drilling and Completion Technologies for Economic and Effective Development of Unconventional Oil & Gas and Suggestions for Further Improvements
-
摘要: 我国非常规油气资源储量丰富,探索经济有效开发的钻井完井技术体系,是加快其勘探开发进程与规模上产的关键。详细介绍了我国已形成的埋深3 500 m以浅非常规油气钻井完井技术体系,包括三维丛式井水平井井眼轨道设计、地质工程一体化设计与作业、强化钻井参数提速、深层页岩气控温钻井、地质导向钻井、高性能钻井液和高效固井等关键技术,指出目前仍存在工厂化作业模式未实现最优化、长水平段水平井钻井可重复性差、“一趟钻”技术与配套装备不成熟、抗高温高压材料及配套钻井工具欠缺等问题,提出了加快推广大平台丛式水平井工厂化作业模式、持续优化长水平段水平井钻井技术、践行地质工程一体化理念和开展抗高温高压材料研发及配套工具研制等发展建议,以大幅提升单井产量和采收率,实现非常规油气的高效勘探开发。Abstract: Abundant reserves of unconventional oil & gas resources occur in China. Exploring drilling and completion technology systems for the economic and efficient development is the key to speeding up the exploration and development process and scale up their production. This paper expounds the drilling and completion technology systems developed by Chinese researchers for unconventional oil & gas at less than 3 500 m depth. The key technologies in the systems involved wellbore trajectory design for three-dimensional cluster horizontal wells, design and operation of geology-engineering integration, rate of penetration (ROP) enhancement through drilling parameter optimization, managed temperature drilling of deep shale gas, geosteering, high-performance drilling fluid, and efficient cementing, etc. Nevertheless, it was noted that this systems still fell short in several ways. For example, optimal implementation of factory operation has yet to be achieved, the repeatability of horizontal well drilling with long horizontal sections was poor, the "one-trip drilling" technology and supporting equipment were not well established, and high-temperature and high-pressure (HTHP) resistant materials and supporting drilling tools were scant. Suggestions for further improvements were also put forward, such as accelerating the promotion of factory operation for large-platform cluster horizontal wells, continuously optimizing drilling technologies for horizontal wells with long horizontal sections, fulfilling the notion of geology-engineering integration, and conducting research & development (R & D) of HTHP resistant materials and developing supporting tools. These measures were expected to substantially boost the single well production and the recovery rate and thereby achieve efficient exploration and development of unconventional oil & gas.
-
随钻远探测可在钻头未钻遇地层界面之前判断其相对倾角及走向,提高储层“甜点”的钻遇率[1-5]。常见的远探测测井仪器有斯伦贝谢公司的GeoSphere随钻测绘系统、贝克休斯公司的EDAR随钻电阻率测井仪等,最大探测距离理论上可达30 m[6]。总体来看,该类测井方法普遍存在测井仪器收发源距长、地层界面信号弱、测量易受地层非均质性影响等问题。究其原因在于,现有测井仪器探测地层边界的基础均为采用闭合发射天线和闭合接收天线,其本质是利用磁偶极子天线激发的磁场张量信息来获取地层界面信息,一般采用增大源距、降低工作频率方式来增加探测距离;此时,随源距增大,线圈尺寸对测量响应的影响基本可以忽略。随钻边界探测响应规律复杂,井周地层界面及电性信息的提取往往依赖快速反演算法。Yang Jian等人[7]基于滑动开窗降维策略,忽略地层横向非均质性,实现了随钻测井曲线“犄角”校正;Li Hu等人[8-9]进一步实现了地层界面的实时提取。感应天线在空间中不仅激发磁场,同时也产生电场,且两者相互正交。Li Shanjun等人[10-11]基于电场信号在方位及幅度衰减方面的优势,提出了采集电场信息发展新型远探测的方法。根据同样的思路,王磊等人[12-13]提出基于磁偶极子激发电场信息,综合利用磁场、电场信息实现短源距远探测,克服了传统远探测方位识别能力弱、源距过长等的问题。现有研究采集电场信息时,发射线圈和接收线圈均采用严格的半线圈结构,这在工程上很难实现。为此,笔者以闭合线圈为发射线圈(即磁偶极子)、非闭合线圈为接收线圈(即电偶极子),设计了一种新型混合偶极子天线系统,模拟了其典型响应特征,分析了地层界面方位、地层电阻率、电场电阻率对比度对其的影响,并探讨了新型天线系统的探测特性,以期为新一代随钻前视远探测仪器的研制提供理论指导。
1. 混合偶极子远探测测量原理
1.1 基本原理
传统随钻远探测测井仪器采用闭合线圈发射、闭合线圈接收的方式,在进行模拟计算时可将闭合线圈等效为磁偶极子,但目前还没有在井下直接测量电场的天线系统。 Li Shanjun等人[10]提出采用非闭合天线(即ME天线,可将其等效为电偶极子;传统的接收磁场的天线可以称之为MM天线)实现电场的测量(如图1所示),研究与实践表明,z方向磁偶极子天线激发的y方向磁场分量是最佳前视远探测分量[3-4,6]。
ME天线测量的总电势VME是电场沿半圆形路径的积分,可等效为半闭合磁偶极子天线与电偶极子天线各自测量电势的叠加[9,11]:
VME=∮B−D−C−A−BEdl+∫B−A−CEdl=∫half MD antennaHMMzzds+∫B−A−CEMEzydl (1) 式中:VME为ME天线测量的总电势,V;E为电场强度,V/m;
EMEzy 为zy方向ME天线测量的电场强度,V/m;HMMzz 为zz方向的MM天线测量的磁场强度,A/m。点B,D和C分别为半圆起点、中间点及终点。闭合回路B-D-C-A-B可视为半个z向磁偶极子天线,而B-A-C是−y方向的电偶极子测量天线,这表明ME天线所测量的信号同时包含磁场同轴分量及电场交叉分量信息。
1.2 天线设计
基于远探测测量原理,采用闭合线圈发射、轴向非闭合线圈接收的方式组合成新型远探测天线系统(见图2),笔者称其为混合偶极子天线系统。
假定发射线圈内线电流密度为1 A/m,则接收线圈处测量的电势信号为[9]:
VME=π r2(2rEMEzysin β+iωμπr22HMMzz) (2) 式中:r为线圈半径,m;β为钻铤旋转角度,(°);ω为角频率,rad/s;μ为介质磁导率,H/m。
式(2)中等号右侧括号中第一项代表y方向电场的贡献,第二项代表z方向磁场的贡献。随钻测井仪器旋转过程中,取方位角为90°和270°时的电势,将其转化为地质信号:
G_real=Re(VME|β=90o−VME|β=270oVME|β=90o+VME|β=270o) (3) G_imag=Im(VME|β=90o−VME|β=270oVME|β=90o+VME|β=270o) (4) 式中:G_real为地质信号的实部;G_imag为地质信号的虚部。
在随钻测井仪器设计中,可选择不同频率、不同源距的基本天线单元,组合成复合天线系统,实现井周地层界面的近、中、远距离探测,通过处理测量信号获取地层电阻率、地面界面方位、距离等参数。
2. 典型响应特征
2.1 不同源距
假设地层模型为双层地层模型,即只有一个地层界面,地层界面两侧电阻率分别为10和100 Ω·m;设置仪器工作频率为100 kHz,线圈系源距为0.40,0.50,0.60和1.50 m,模拟测井仪器的测井响应。图3为工作频率100 kHz下不同源距测井响应信号的实部、虚部。由图3可知:仪器靠近地层界面时,响应信号的实部随距地层界面的距离减小而线性增加,其虚部出现明显的非线性关系;但无论响应信号的实部还是虚部,源距越大,地层界面两侧异常范围越大,表明其对地层边界的探测能力越强;响应信号实部的响应强度远大于其虚部的响应强度,表明探测地层边界能力的强弱主要与响应信号的实部有关。
2.2 不同工作频率
混合偶极子测井仪器参数及地层模型不变,固定源距(1.50 m),模拟不同工作频率的测井响应,结果如图4所示(图中的实线代表测井响应为正值,虚线表示测井响应为负值)。取信号幅度0.003 dB为探边能力的阈值(传统仪器取0.025 dB)。由图4可知:工作频率越低,混合偶极子测井仪器的探测范围越大;其在高阻层的探边能力远大于其在低阻层;源距为1.50 m时,混合偶极子测井仪器在高阻层中的低频探边距离可达21 m,在低阻层中仍可探测13 m以内的地层界面。因此,使用混合偶极子天线系统可以实现短源距远探测。
3. 影响因素分析
3.1 方位敏感性
为分析混合偶极子天线系统的方位敏感性,设置地层模型为双层单界面模型,一组模型界面两侧地层的电阻率分别为10和100 Ω·m,一组模型界面两侧地层的电阻率分别为100和10 Ω·m。假设仪器自上而下倾斜穿过地层界面,仪器参数与上文一致,ME天线测井响应信号的实部和虚部分别如图5和图6所示。由图5和图6可知,仪器从低阻地层穿过界面至高阻地层,与仪器自高阻地层穿过界面至低阻地层,其在相同电阻率地层中的测井响应大小相等,但符号相反,表明混合偶极子天线具有识别地层界面方位的能力。
进一步模拟仪器在中高频(400 kHz、2 MHz)模式下的测井响应特征,不同源距的响应规律一致。需要说明的是,随着工作频率增大,地质信号的非线性特征进一步增强,与文中2.1节所描述的特征基本一致,但这并不会改变仪器探测方位的特性。
3.2 地层电阻率
地层模型为双层单界面模型,假设界面两侧地层的电阻率对比度为1∶10,设置界面两侧地层的电阻率分别为40与400 Ω·m,10与100 Ω·m,4与40 Ω·m和1与10 Ω·m。图7和图8为源距1.50 m、工作频率100 kHz和2 MHz下仪器的测井响应信号。由图7和图8可知:地层电阻率对比度固定时,工作频率越高,探边距离越小;地层电阻率越高,探边距离越大,最大和最小探边距离可相差3倍以上。
3.3 电阻率对比度
电阻率对比度是决定远探测仪器探测性能的一个重要因素[4],为此设置地层模型为双层单界面模型,其中高阻地层电阻率固定为100 Ω·m,低阻地层电阻率分别设置为1,4,10和40 Ω·m。假设仪器源距为1.50 m,以工作频率100 kHz自低阻地层斜穿至高阻地层,测井响应如图9所示。由图9可知:当高阻地层电阻率固定时,仪器的探边距离随着电阻率对比度增大而不断增大;当电阻率对比度大于10∶100时,探边距离增幅有限;在低阻地层一侧,电阻率越低,测井响应信号衰减越快、变化越剧烈。
4. 探边界能力分析
4.1 实部探边能力
设置地层模型为双层单界面模型,界面两侧地层电阻率分别为R1和R2,仪器位于电阻率为R1的地层内且平行于地层界面,信号探测阈值0.003 dB,仪器参数与前文所述一致,模拟其实部的探边能力,图10为源距1.50 m、工作频率100,400 kHz和2 MHz下的测井响应信号实部探边Picasso图(图中每个像素点的颜色代表仪器在该对比度条件下最大探边距离。
由图10可知:地层电阻率对比度越大,其探边能力越强,即探边距离越远;对角线处,即地层两侧电阻率对比度为1,此处附近为探边仪器探测盲区;在源距相同时,仪器对地层边界的探测距离随工作频率增大而迅速减小。在工作频率相同时,仪器对地层边界探测距离随源距增大而急剧增大。在长源距、低频条件下,仪器最大探边距离可达30 m。
4.2 虚部探边能力
图11为源距1.50 m,工作频率100,400 kHz和2 MHz下测井响应信号虚部探边Picasso图。对比图10和图11发现,与测井响应信号实部相比,测井响应信号虚部在中低阻地层的探边能力相对更强;低电阻率对比度条件下,仪器在高阻地层的探测盲区相对较大。
4.3 综合探边能力
综合探边能力是综合考虑测井仪器响应信号的实部和虚部,选取两者最大探边距离,绘制综合探边Picasso图,如图12所示。由图12可知,Picasso图中不间断区域显著变少,说明混合偶极子的综合探边能力随地层电阻率和电阻率对比度的变化较为平缓,其综合探边的盲区较小。利用多频、多源距组合天线系统,既可探测井周附近数米的地层界面,亦能探测井周30 m多远处的地层界面,从而实现混合偶极子远探测对探边距离的最优覆盖,即实现短源距条件下的多尺度地层边界探测。
5. 结 论
1)混合偶极子靠近地层界面时,响应信号的实部呈线性增大趋势,虚部呈非线性关系,在高频工作模式下尤为明显;其对地层界面的幅度比响应,实部大于虚部。
2)混合偶极子在高阻地层的探边能力,远大于其在低阻地层的探边能力;源距为1.50 m时,高阻地层中的低频探边距离可达21 m。
3)仪器从地层界面不同位置穿越,在相同电阻率地层中的测井响应大小相等、符号相反,表明混合偶极子具有识别地层界面方位的能力。
4)混合偶极子综合探边盲区较小,可通过多频、多源距组合天线系统,实现混合偶极子远探测对地层边界的最优覆盖,即实现短源距条件下的多尺度地层边界探测。
-
表 1 国产顶驱下套管装置主要技术参数
Table 1 Main technical parameters of China-made top-drive casing-running device
型号 适用套管外径/
mm水眼密封压力/
MPa最大工作扭矩/
(kN·m)XTG140H外卡 114~140 35~70 35 XTG140H内卡 168~244 35~70 35 XTG168内卡 244~340 50 50 XTG340内卡 340~508 15~35 50 -
[1] 马永生,冯建辉,牟泽辉,等. 中国石化非常规油气资源潜力及勘探进展[J]. 中国工程科学,2012,14(6):22–30. doi: 10.3969/j.issn.1009-1742.2012.06.004 MA Yongsheng, FENG Jianhui, MU Zehui, et al. The potential and exploring progress of unconventional hydrocarbon resources in Sinopec[J]. Strategic Study of CAE, 2012, 14(6): 22–30. doi: 10.3969/j.issn.1009-1742.2012.06.004
[2] 马永生,蔡勋育,赵培荣. 石油工程技术对油气勘探的支撑与未来攻关方向思考:以中国石化油气勘探为例[J]. 石油钻探技术,2016,44(2):1–9. MA Yongsheng, CAI Xunyu, ZHAO Peirong. The support of petroleum engineering technologies in trends in oil and gas exploration and development: case study on oil and gas exploration in Sino-pec[J]. Petroleum Drilling Techniques, 2016, 44(2): 1–9.
[3] 邹才能,杨智,何东博,等. 常规-非常规天然气理论、技术及前景[J]. 石油勘探与开发,2018,45(4):575–587. ZOU Caineng, YANG Zhi, HE Dongbo, et al. Theory, technology and prospects of conventional and unconventional natural gas[J]. Petroleum Exploration and Development, 2018, 45(4): 575–587.
[4] 李国欣,朱如凯. 中国石油非常规油气发展现状、挑战与关注问题[J]. 中国石油勘探,2020,25(2):1–13. doi: 10.3969/j.issn.1672-7703.2020.02.001 LI Guoxin, ZHU Rukai. Progress, challenges and key issues of unconventional oil and gas development of CNPC[J]. China Petroleum Exploration, 2020, 25(2): 1–13. doi: 10.3969/j.issn.1672-7703.2020.02.001
[5] 张宁宁,王青,王建君,等. 近20年世界油气新发现特征与勘探趋势展望[J]. 中国石油勘探,2018,23(1):44–53. doi: 10.3969/j.issn.1672-7703.2018.01.005 ZHANG Ningning, WANG Qing, WANG Jianjun, et al. Characteristics of oil and gas discoveries in recent 20 years and future exploration in the world[J]. China Petroleum Exploration, 2018, 23(1): 44–53. doi: 10.3969/j.issn.1672-7703.2018.01.005
[6] 杨金华,郭晓霞. 一趟钻新技术应用与进展[J]. 石油科技论坛,2017,36(2):38–40. YANG Jinhua, GUO Xiaoxia. Application of new technology: single bit-run drilling[J]. Petroleum Science and Technology Forum, 2017, 36(2): 38–40.
[7] 光新军,叶海超,蒋海军. 北美页岩油气长水平段水平井钻井实践与启示[J]. 石油钻采工艺,2021,43(1):1–6. GUANG Xinjun, YE Haichao, JIANG Haijun. Drilling practice of shale oil & gas horizontal wells with long horizontal section in the North America and its enlightenment[J]. Oil Drilling & Production Technology, 2021, 43(1): 1–6.
[8] 田洪亮,吕建中,李万平,等. 低油价下北美地区降低钻完井作业成本的主要做法及启示[J]. 国际石油经济,2016,24(9):36–43. doi: 10.3969/j.issn.1004-7298.2016.09.006 TIAN Hongliang, LYU Jianzhong, LI Wanping, et al. Main practice of reducing drilling and completion cost in North America under low oil price and its enlightenment[J]. International Petroleum Economics, 2016, 24(9): 36–43. doi: 10.3969/j.issn.1004-7298.2016.09.006
[9] US Energy Information Administration (EIA). Shale gas production[EB/OL]. [2019-12-31]. https://www.eia.gov/petroleum/data.php.
[10] US Energy Information Administration (EIA). Nature gas production[EB/OL]. [2019-12-31]. https://www.eia.gov/petroleum/data.php.
[11] US Energy Information Administration (EIA). Monthly crude oil production[EB/OL]. [2021-06-01]. https://www.eia.gov/petroleum/data.php.
[12] US Energy Information Administration (EIA). Tight oil production estimates by play[EB/OL]. [2021-06-01]. https://www.eia.gov/petro-leum/data.php.
[13] 邹才能,杨智,朱如凯,等. 中国非常规油气勘探开发与理论技术进展[J]. 地质学报,2015,89(6):979–1007. doi: 10.3969/j.issn.0001-5717.2015.06.001 ZOU Caineng, YANG Zhi, ZHU Rukai, et al. Progress in China’s unconventional oil & gas exploration and development and theoretical technologies[J]. Acta Geologica Sinica, 2015, 89(6): 979–1007. doi: 10.3969/j.issn.0001-5717.2015.06.001
[14] 邹才能, 潘松圻. “三个创新” 推动非常规油气 “三个突破”[N]. 中国科学报, 2021-01-06(3). ZOU Caineng, PAN Songqi. With the innovation of theory, institution and management to promote the three breakthrough in unconventional oil & gas[J]. China Science Daily, 2021-01-06(3).
[15] 蔡勋育,刘金连,张宇,等. 中国石化 “十三五” 油气勘探进展与 “十四五” 前景展望[J]. 中国石油勘探,2021,26(1):31–42. CAI Xunyu, LIU Jinlian, ZHANG Yu, et al. Oil and gas exploration progress of Sinopec during the 13th Five-Year Plan period and prospect forecast for the 14th Five-Year Plan[J]. China Petroleum Exploration, 2021, 26(1): 31–42.
[16] 张锦宏. 中国石化页岩油工程技术现状与发展展望[J]. 石油钻探技术,2021,49(4):8–13. doi: 10.11911/syztjs.2021072 ZHANG Jinhong. Present status and development prospects of Sinopec shale oil engineering technologies[J]. Petroleum Drilling Techniques, 2021, 49(4): 8–13. doi: 10.11911/syztjs.2021072
[17] 王敬,魏志鹏,胡俊瑜. 中国页岩油气开发历程与理论技术进展[J]. 石油化工应用,2021,40(10):1–4. doi: 10.3969/j.issn.1673-5285.2021.10.001 WANG Jing, WEI Zhipeng, HU Junyu. Development history and theoretical technology progress of shale oil and gas in China[J]. Petrochemical Industry Application, 2021, 40(10): 1–4. doi: 10.3969/j.issn.1673-5285.2021.10.001
[18] 孙焕泉,蔡勋育,周德华,等. 中国石化页岩油勘探实践与展望[J]. 中国石油勘探,2019,24(5):569–575. doi: 10.3969/j.issn.1672-7703.2019.05.004 SUN Huanquan, CAI Xunyu, ZHOU Dehua, et al. Practice and prospect of Sinopec shale oil exploration[J]. China Petroleum Exploration, 2019, 24(5): 569–575. doi: 10.3969/j.issn.1672-7703.2019.05.004
[19] 李宗田,肖勇,李宁,等. 低油价下的页岩油气开发工程技术新进展[J]. 断块油气田,2021,28(5):577–585. LI Zongtian, XIAO Yong, LI Ning, et al. New progress in shale oil and gas development engineering technology under low oil pri-ces[J]. Fault-Block Oil & Gas Field, 2021, 28(5): 577–585.
[20] 谢玉洪,蔡东升,孙晗森. 中国海油非常规气勘探开发一体化探索与成效[J]. 中国石油勘探,2020,25(2):27–32. doi: 10.3969/j.issn.1672-7703.2020.02.003 XIE Yuhong, CAI Dongsheng, SUN Hansen. Exploration and effect of exploration and development integration in unconventional gas of CNOOC[J]. China Petroleum Exploration, 2020, 25(2): 27–32. doi: 10.3969/j.issn.1672-7703.2020.02.003
[21] 高德利. 大型丛式水平井工程与山区页岩气高效开发模式[J]. 天然气工业,2018,38(8):1–7. doi: 10.3787/j.issn.1000-0976.2018.08.001 GAO Deli. A high-efficiency development mode of shale gas reservoirs in mountainous areas based on large cluster horizontal well engineering[J]. Natural Gas Industry, 2018, 38(8): 1–7. doi: 10.3787/j.issn.1000-0976.2018.08.001
[22] 林家昱. 丛式水平井井眼轨道优化设计[D]. 西安: 西安石油大学, 2015. LIN Jiayu. Optimization design in cluster horizontal wells trajectory[D]. Xi’an: Xi’an Shiyou University, 2015.
[23] 孟鐾桥,周柏年,付志,等. 勺形水平井在四川长宁页岩气开发中的应用[J]. 特种油气藏,2017,24(5):165–169. doi: 10.3969/j.issn.1006-6535.2017.05.031 MENG Beiqiao, ZHOU Bainian, FU Zhi, et al. Application of spoon-shaped horizontal wells for development of shale gas in Changning, Sichuan[J]. Special Oil & Gas Reservoirs, 2017, 24(5): 165–169. doi: 10.3969/j.issn.1006-6535.2017.05.031
[24] 刘伟,何龙,胡大梁,等. 川南海相深层页岩气钻井关键技术[J]. 石油钻探技术,2019,47(6):9–14. doi: 10.11911/syztjs.2019118 LIU Wei, HE Long, HU Daliang, et al. Key technologies for deep marine shale gas drilling in Southern Sichuan[J]. Petroleum Drilling Techniques, 2019, 47(6): 9–14. doi: 10.11911/syztjs.2019118
[25] 王万庆,石仲元,付仟骞. G0-7三维水平井井组工厂化钻井工艺[J]. 石油钻采工艺,2015,37(2):27–31. WANG Wanqing, SHI Zhongyuan, FU Qianqian. Factory drilling technology for G0-7 3D horizontal well group[J]. Oil Drilling & Production Technology, 2015, 37(2): 27–31.
[26] 胡文瑞. 地质工程一体化是实现复杂油气藏效益勘探开发的必由之路[J]. 中国石油勘探,2017,22(1):1–5. doi: 10.3969/j.issn.1672-7703.2017.01.001 HU Wenrui. Geology-engineering integration: a necessary way to realize profitable exploration and development of complex reservoirs[J]. China Petroleum Exploration, 2017, 22(1): 1–5. doi: 10.3969/j.issn.1672-7703.2017.01.001
[27] 章敬. 非常规油藏地质工程一体化效益开发实践:以准噶尔盆地吉木萨尔凹陷芦草沟组页岩油为例[J]. 断块油气田,2021,28(2):151–155. ZHANG Jing. Effective development practices of geology-engineering integration on unconventional oil reservoirs: taking Lucaogou Formation shale oil in Jimsar Sag, Junggar Basin for example[J]. Fault-Block Oil & Gas Field, 2021, 28(2): 151–155.
[28] 黄浩勇,范宇,曾波,等. 长宁区块页岩气水平井组地质工程一体化[J]. 科学技术与工程,2020,20(1):175–182. doi: 10.3969/j.issn.1671-1815.2020.01.028 HUANG Haoyong, FAN Yu, ZENG Bo, et al. Geology-engineering integration of platform well in Changning Block[J]. Science Technology and Engineering, 2020, 20(1): 175–182. doi: 10.3969/j.issn.1671-1815.2020.01.028
[29] 杨恒林,乔磊,田中兰. 页岩气储层工程地质力学一体化技术进展与探讨[J]. 石油钻探技术,2017,45(2):25–31. YANG Henglin, QIAO Lei, TIAN Zhonglan. Advances in shale gas reservoir engineering and geomechanics integration technology and relevant discussions[J]. Petroleum Drilling Techniques, 2017, 45(2): 25–31.
[30] 谢军,鲜成钢,吴建发,等. 长宁国家级页岩气示范区地质工程一体化最优化关键要素实践与认识[J]. 中国石油勘探,2019,24(2):174–185. XIE Jun, XIAN Chenggang, WU Jianfa, et al. Optimal key elements of geoengineering integration in Changning National Shale Gas Demonstration Zone[J]. China Petroleum Exploration, 2019, 24(2): 174–185.
[31] 王彦祺,贺庆,龙志平. 渝东南地区页岩气钻完井技术主要进展及发展方向[J]. 油气藏评价与开发,2021,11(3):356–364. WANG Yanqi, HE Qing, LONG Zhiping. Main progress and development direction of shale gas drilling and completion technologies in Southeastern Chongqing[J]. Reservoir Evaluation and Development, 2021, 11(3): 356–364.
[32] 何治亮,聂海宽,蒋廷学. 四川盆地深层页岩气规模有效开发面临的挑战与对策[J]. 油气藏评价与开发,2021,11(2):1–11. HE Zhiliang, NIE Haikuan, JIANG Tingxue. Challenges and countermeasures of effective development with large scale of deep shale gas in Sichuan Basin[J]. Reservoir Evaluation and Development, 2021, 11(2): 1–11.
[33] TRICHEL K, FABIAN J. Understanding and managing bottom hole circulating temperature behavior in horizontal HT wells: a case study based on Haynesville horizontal wells[R]. SPE-140332-MS, 2011.
[34] 林昕,苑仁国,秦磊,等. 地质导向钻井前探技术现状及进展[J]. 特种油气藏,2021,28(2):1–10. LIN Xin, YUAN Renguo, QIN Lei, et al. Present situation and progress of geosteering drilling pre-prospecting technology[J]. Special Oil & Gas Reservoirs, 2021, 28(2): 1–10.
[35] 伍贤柱. 四川盆地威远页岩气藏高效开发关键技术[J]. 石油钻探技术,2019,47(4):1–9. doi: 10.11911/syztjs.2019074 WU Xianzhu. Key technologies in the efficient development of the Weiyuan shale gas reservoir, Sichuan Basin[J]. Petroleum Drilling Techniques, 2019, 47(4): 1–9. doi: 10.11911/syztjs.2019074
[36] 林永学,甄剑武. 威远区块深层页岩气水平井水基钻井液技术[J]. 石油钻探技术,2019,47(2):21–27. doi: 10.11911/syztjs.2019022 LIN Yongxue, ZHEN Jianwu. Water based drilling fluid technology for deep shale gas horizontal wells in Block Weiyuan[J]. Petroleum Drilling Techniques, 2019, 47(2): 21–27. doi: 10.11911/syztjs.2019022
[37] 林永学,王显光. 中国石化页岩气油基钻井液技术进展与思考[J]. 石油钻探技术,2014,42(4):7–13. LIN Yongxue, WANG Xianguang. Development and reflection of oil-based drilling fluid technology for shale gas of Sinopec[J]. Petroleum Drilling Techniques, 2014, 42(4): 7–13.
[38] 潘军,刘卫东,张金成. 涪陵页岩气田钻井工程技术进展与发展建议[J]. 石油钻探技术,2018,46(4):9–15. PAN Jun, LIU Weidong, ZHANG Jincheng. Drilling technology progress and recommendations for the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2018, 46(4): 9–15.
[39] 林永学,王显光,李荣府. 页岩气水平井低油水比油基钻井液研制及应用[J]. 石油钻探技术,2016,44(2):28–33. doi: 10.11911/syztjs.201602005 LIN Yongxue, WANG Xianguang, LI Rongfu. Development of oil-based drilling fluid with low oil-water ratio and its application to drilling horizontal shale gas wells[J]. Petroleum Drilling Techni-ques, 2016, 44(2): 28–33. doi: 10.11911/syztjs.201602005
[40] 路保平,丁士东. 中国石化页岩气工程技术新进展与发展展望[J]. 石油钻探技术,2018,46(1):1–9. LU Baoping, DING Shidong. New progress and development prospect in shale gas engineering technologies of Sinopec[J]. Petroleum Drilling Techniques, 2018, 46(1): 1–9.
[41] 路保平. 中国石化石油工程技术新进展与发展建议[J]. 石油钻探技术,2021,49(1):1–10. doi: 10.11911/syztjs.2021001 LU Baoping. New progress and development proposals of Sinopec’s petroleum engineering technologies[J]. Petroleum Drilling Techniques, 2021, 49(1): 1–10. doi: 10.11911/syztjs.2021001
[42] 丁士东,赵向阳. 中国石化重点探区钻井完井技术新进展与发展建议[J]. 石油钻探技术,2020,48(4):11–20. doi: 10.11911/syztjs.2020069 DING Shidong, ZHAO Xiangyang. New progress and development suggestions for drilling and completion technologies in Sinopec key exploration areas[J]. Petroleum Drilling Techniques, 2020, 48(4): 11–20. doi: 10.11911/syztjs.2020069
[43] 臧艳彬. 川东南地区深层页岩气钻井关键技术[J]. 石油钻探技术,2018,46(3):7–12. ZANG Yanbin. Key drilling technology for deep shale gas reservoirs in the Southeastern Sichuan Region[J]. Petroleum Drilling Techniques, 2018, 46(3): 7–12.
[44] 王建华,张家旗,谢盛,等. 页岩气油基钻井液体系性能评估及对策[J]. 钻井液与完井液,2019,36(5):555–559. doi: 10.3969/j.issn.1001-5620.2019.05.005 WANG Jianhua, ZHANG Jiaqi, XIE Sheng, et al. Evaluation and improvement of the performance of oil base drilling fluids for shale gas drilling[J]. Drilling Fluid & Completion Fluid, 2019, 36(5): 555–559. doi: 10.3969/j.issn.1001-5620.2019.05.005
[45] 胡祖彪,张建卿,王清臣,等. 长庆致密气超长水平段水基钻井液技术[J]. 钻井液与完井液,2021,38(2):183–188. doi: 10.3969/j.issn.1001-5620.2021.02.009 HU Zubiao, ZHANG Jianqing, WANG Qingchen, et al. Water base drilling fluid technology for ultra-long horizontal drilling in a tight gas well in Changqing Oilfield[J]. Drilling Fluid & Completion Fluid, 2021, 38(2): 183–188. doi: 10.3969/j.issn.1001-5620.2021.02.009
[46] 蒙华军,张矿生,谢文敏,等. 长庆致密气藏4 000 m水平段钻井技术实践与认识[J]. 钻采工艺,2021,44(4):119–122. doi: 10.3969/J.ISSN.1006-768X.2021.04.27 MENG Huajun, ZHANG Kuangsheng, XIE Wenmin, et al. Practice and recognition of drilling technology in 4 000 m horizontal section of tight gas reservoir in Changqing[J]. Drilling & Production Technology, 2021, 44(4): 119–122. doi: 10.3969/J.ISSN.1006-768X.2021.04.27
[47] 李骥然,赵博,米凯夫,等. 旋转下套管技术在川渝页岩气开发中的应用[J]. 石化技术,2020,27(7):90–92. doi: 10.3969/j.issn.1006-0235.2020.07.050 LI Jiran, ZHAO Bo, MI Kaifu, et al. Application of top drive casing running technology in Sichuan and Chongqing shale gas exploration and development[J]. Petrochemical Industry Technology, 2020, 27(7): 90–92. doi: 10.3969/j.issn.1006-0235.2020.07.050
[48] 张国田,邹连阳,黄衍福,等. 顶驱下套管装置的研制[J]. 石油机械,2008,36(9):82–84. ZHANG Guotian, ZOU Lianyang, HUANG Yanfu, et al. Development of top-drive casing-running device[J]. China Petroleum Machinery, 2008, 36(9): 82–84.
[49] 江乐,梅明佳,段宏超,等. 华H50-7井超4 000 m水平段套管下入研究与应用[J]. 石油机械,2021,49(8):30–38. JIANG Le, MEI Mingjia, DUAN Hongchao, et al. Investigation into casing running in over 4 000 m long horizontal-section of Well Hua H50-7[J]. China Petroleum Machinery, 2021, 49(8): 30–38.
[50] 焦亚军, 陈安环, 何方雨, 等. 漂浮下套管技术在浅层页岩气水平井中的应用及优化[J]. 天然气工业, 2021, 41(增刊1): 177–181. JIAO Yajun, CHEN Anhuan, HE Fangyu, et al. Application and optimization of floating casing running technology in shallow shale gas horizontal wells[J]. Natural Gas Industry, 2021, 41(supplement 1): 177–181.
[51] 刘斌辉, 唐守勇, 曲从锋, 等. 页岩气水平井固井趾端压裂滑套的研制[J]. 天然气工业, 2021, 41(增刊1): 192–196. LIU Binhui, TANG Shouyong, QU Congfeng, et al. Development of toe fracturing sleeve for shale gas horizontal well cementing[J]. Natural Gas Industry, 2021, 41(supplement 1): 192–196.
[52] 赵常青,胡小强,张永强,等. 页岩气长水平井段防气窜固井技术[J]. 天然气工业,2017,37(10):59–65. doi: 10.3787/j.issn.1000-0976.2017.10.008 ZHAO Changqing, HU Xiaoqiang, ZHANG Yongqiang, et al. Anti-channeling cementing technology for long horizontal sections of shale gas wells[J]. Natural Gas Industry, 2017, 37(10): 59–65. doi: 10.3787/j.issn.1000-0976.2017.10.008
[53] 黄海鸿. 页岩气水平井固井水泥浆体系研究[D]. 成都: 西南石油大学, 2014. HUANG Haihong. Cementing slurry system of horizontal well in shale gas[D]. Chengdu: Southwest Petroleum University, 2014.
[54] 赵常青,谭宾,曾凡坤,等. 长宁—威远页岩气示范区水平井固井技术[J]. 断块油气田,2014,21(2):256–258. ZHAO Changqing, TAN Bin, ZENG Fankun, et al. Cementing technology of horizontal well in Changning–Weiyuan shale gas reservoir[J]. Fault-Block Oil & Gas Field, 2014, 21(2): 256–258.
[55] 陈雷,杨红歧,肖京男,等. 杭锦旗区块漂珠–氮气超低密度泡沫水泥固井技术[J]. 石油钻探技术,2018,46(3):34–38. CHEN Lei, YANG Hongqi, XIAO Jingnan, et al. Ultra-low density hollow microspheres-nitrogen foamed cementing technology in Block Hangjinqi[J]. Petroleum Drilling Techniques, 2018, 46(3): 34–38.
[56] 赵福豪,黄维安,雍锐,等. 地质工程一体化研究与应用现状[J]. 石油钻采工艺,2021,43(2):131–138. ZHAO Fuhao, HUANG Weian, YONG Rui, et al. Research and application status of geology-engineering integration[J]. Oil Drilling & Production Technology, 2021, 43(2): 131–138.
-
期刊类型引用(1)
1. 李斐, 路飞飞, 胡文庭. 超深超高温裂缝性气藏固井水泥浆技术. 石油钻采工艺. 2019(01): 38-42 . 百度学术
其他类型引用(0)