The Up-to-Date Drilling and Completion Technologies for Economic and Effective Development of Unconventional Oil & Gas and Suggestions for Further Improvements
-
摘要: 我国非常规油气资源储量丰富,探索经济有效开发的钻井完井技术体系,是加快其勘探开发进程与规模上产的关键。详细介绍了我国已形成的埋深3 500 m以浅非常规油气钻井完井技术体系,包括三维丛式井水平井井眼轨道设计、地质工程一体化设计与作业、强化钻井参数提速、深层页岩气控温钻井、地质导向钻井、高性能钻井液和高效固井等关键技术,指出目前仍存在工厂化作业模式未实现最优化、长水平段水平井钻井可重复性差、“一趟钻”技术与配套装备不成熟、抗高温高压材料及配套钻井工具欠缺等问题,提出了加快推广大平台丛式水平井工厂化作业模式、持续优化长水平段水平井钻井技术、践行地质工程一体化理念和开展抗高温高压材料研发及配套工具研制等发展建议,以大幅提升单井产量和采收率,实现非常规油气的高效勘探开发。Abstract: Abundant reserves of unconventional oil & gas resources occur in China. Exploring drilling and completion technology systems for the economic and efficient development is the key to speeding up the exploration and development process and scale up their production. This paper expounds the drilling and completion technology systems developed by Chinese researchers for unconventional oil & gas at less than 3 500 m depth. The key technologies in the systems involved wellbore trajectory design for three-dimensional cluster horizontal wells, design and operation of geology-engineering integration, rate of penetration (ROP) enhancement through drilling parameter optimization, managed temperature drilling of deep shale gas, geosteering, high-performance drilling fluid, and efficient cementing, etc. Nevertheless, it was noted that this systems still fell short in several ways. For example, optimal implementation of factory operation has yet to be achieved, the repeatability of horizontal well drilling with long horizontal sections was poor, the "one-trip drilling" technology and supporting equipment were not well established, and high-temperature and high-pressure (HTHP) resistant materials and supporting drilling tools were scant. Suggestions for further improvements were also put forward, such as accelerating the promotion of factory operation for large-platform cluster horizontal wells, continuously optimizing drilling technologies for horizontal wells with long horizontal sections, fulfilling the notion of geology-engineering integration, and conducting research & development (R & D) of HTHP resistant materials and developing supporting tools. These measures were expected to substantially boost the single well production and the recovery rate and thereby achieve efficient exploration and development of unconventional oil & gas.
-
-
表 1 国产顶驱下套管装置主要技术参数
Table 1 Main technical parameters of China-made top-drive casing-running device
型号 适用套管外径/
mm水眼密封压力/
MPa最大工作扭矩/
(kN·m)XTG140H外卡 114~140 35~70 35 XTG140H内卡 168~244 35~70 35 XTG168内卡 244~340 50 50 XTG340内卡 340~508 15~35 50 -
[1] 马永生,冯建辉,牟泽辉,等. 中国石化非常规油气资源潜力及勘探进展[J]. 中国工程科学,2012,14(6):22–30. doi: 10.3969/j.issn.1009-1742.2012.06.004 MA Yongsheng, FENG Jianhui, MU Zehui, et al. The potential and exploring progress of unconventional hydrocarbon resources in Sinopec[J]. Strategic Study of CAE, 2012, 14(6): 22–30. doi: 10.3969/j.issn.1009-1742.2012.06.004
[2] 马永生,蔡勋育,赵培荣. 石油工程技术对油气勘探的支撑与未来攻关方向思考:以中国石化油气勘探为例[J]. 石油钻探技术,2016,44(2):1–9. MA Yongsheng, CAI Xunyu, ZHAO Peirong. The support of petroleum engineering technologies in trends in oil and gas exploration and development: case study on oil and gas exploration in Sino-pec[J]. Petroleum Drilling Techniques, 2016, 44(2): 1–9.
[3] 邹才能,杨智,何东博,等. 常规-非常规天然气理论、技术及前景[J]. 石油勘探与开发,2018,45(4):575–587. ZOU Caineng, YANG Zhi, HE Dongbo, et al. Theory, technology and prospects of conventional and unconventional natural gas[J]. Petroleum Exploration and Development, 2018, 45(4): 575–587.
[4] 李国欣,朱如凯. 中国石油非常规油气发展现状、挑战与关注问题[J]. 中国石油勘探,2020,25(2):1–13. doi: 10.3969/j.issn.1672-7703.2020.02.001 LI Guoxin, ZHU Rukai. Progress, challenges and key issues of unconventional oil and gas development of CNPC[J]. China Petroleum Exploration, 2020, 25(2): 1–13. doi: 10.3969/j.issn.1672-7703.2020.02.001
[5] 张宁宁,王青,王建君,等. 近20年世界油气新发现特征与勘探趋势展望[J]. 中国石油勘探,2018,23(1):44–53. doi: 10.3969/j.issn.1672-7703.2018.01.005 ZHANG Ningning, WANG Qing, WANG Jianjun, et al. Characteristics of oil and gas discoveries in recent 20 years and future exploration in the world[J]. China Petroleum Exploration, 2018, 23(1): 44–53. doi: 10.3969/j.issn.1672-7703.2018.01.005
[6] 杨金华,郭晓霞. 一趟钻新技术应用与进展[J]. 石油科技论坛,2017,36(2):38–40. YANG Jinhua, GUO Xiaoxia. Application of new technology: single bit-run drilling[J]. Petroleum Science and Technology Forum, 2017, 36(2): 38–40.
[7] 光新军,叶海超,蒋海军. 北美页岩油气长水平段水平井钻井实践与启示[J]. 石油钻采工艺,2021,43(1):1–6. GUANG Xinjun, YE Haichao, JIANG Haijun. Drilling practice of shale oil & gas horizontal wells with long horizontal section in the North America and its enlightenment[J]. Oil Drilling & Production Technology, 2021, 43(1): 1–6.
[8] 田洪亮,吕建中,李万平,等. 低油价下北美地区降低钻完井作业成本的主要做法及启示[J]. 国际石油经济,2016,24(9):36–43. doi: 10.3969/j.issn.1004-7298.2016.09.006 TIAN Hongliang, LYU Jianzhong, LI Wanping, et al. Main practice of reducing drilling and completion cost in North America under low oil price and its enlightenment[J]. International Petroleum Economics, 2016, 24(9): 36–43. doi: 10.3969/j.issn.1004-7298.2016.09.006
[9] US Energy Information Administration (EIA). Shale gas production[EB/OL]. [2019-12-31]. https://www.eia.gov/petroleum/data.php.
[10] US Energy Information Administration (EIA). Nature gas production[EB/OL]. [2019-12-31]. https://www.eia.gov/petroleum/data.php.
[11] US Energy Information Administration (EIA). Monthly crude oil production[EB/OL]. [2021-06-01]. https://www.eia.gov/petroleum/data.php.
[12] US Energy Information Administration (EIA). Tight oil production estimates by play[EB/OL]. [2021-06-01]. https://www.eia.gov/petro-leum/data.php.
[13] 邹才能,杨智,朱如凯,等. 中国非常规油气勘探开发与理论技术进展[J]. 地质学报,2015,89(6):979–1007. doi: 10.3969/j.issn.0001-5717.2015.06.001 ZOU Caineng, YANG Zhi, ZHU Rukai, et al. Progress in China’s unconventional oil & gas exploration and development and theoretical technologies[J]. Acta Geologica Sinica, 2015, 89(6): 979–1007. doi: 10.3969/j.issn.0001-5717.2015.06.001
[14] 邹才能, 潘松圻. “三个创新” 推动非常规油气 “三个突破”[N]. 中国科学报, 2021-01-06(3). ZOU Caineng, PAN Songqi. With the innovation of theory, institution and management to promote the three breakthrough in unconventional oil & gas[J]. China Science Daily, 2021-01-06(3).
[15] 蔡勋育,刘金连,张宇,等. 中国石化 “十三五” 油气勘探进展与 “十四五” 前景展望[J]. 中国石油勘探,2021,26(1):31–42. CAI Xunyu, LIU Jinlian, ZHANG Yu, et al. Oil and gas exploration progress of Sinopec during the 13th Five-Year Plan period and prospect forecast for the 14th Five-Year Plan[J]. China Petroleum Exploration, 2021, 26(1): 31–42.
[16] 张锦宏. 中国石化页岩油工程技术现状与发展展望[J]. 石油钻探技术,2021,49(4):8–13. doi: 10.11911/syztjs.2021072 ZHANG Jinhong. Present status and development prospects of Sinopec shale oil engineering technologies[J]. Petroleum Drilling Techniques, 2021, 49(4): 8–13. doi: 10.11911/syztjs.2021072
[17] 王敬,魏志鹏,胡俊瑜. 中国页岩油气开发历程与理论技术进展[J]. 石油化工应用,2021,40(10):1–4. doi: 10.3969/j.issn.1673-5285.2021.10.001 WANG Jing, WEI Zhipeng, HU Junyu. Development history and theoretical technology progress of shale oil and gas in China[J]. Petrochemical Industry Application, 2021, 40(10): 1–4. doi: 10.3969/j.issn.1673-5285.2021.10.001
[18] 孙焕泉,蔡勋育,周德华,等. 中国石化页岩油勘探实践与展望[J]. 中国石油勘探,2019,24(5):569–575. doi: 10.3969/j.issn.1672-7703.2019.05.004 SUN Huanquan, CAI Xunyu, ZHOU Dehua, et al. Practice and prospect of Sinopec shale oil exploration[J]. China Petroleum Exploration, 2019, 24(5): 569–575. doi: 10.3969/j.issn.1672-7703.2019.05.004
[19] 李宗田,肖勇,李宁,等. 低油价下的页岩油气开发工程技术新进展[J]. 断块油气田,2021,28(5):577–585. LI Zongtian, XIAO Yong, LI Ning, et al. New progress in shale oil and gas development engineering technology under low oil pri-ces[J]. Fault-Block Oil & Gas Field, 2021, 28(5): 577–585.
[20] 谢玉洪,蔡东升,孙晗森. 中国海油非常规气勘探开发一体化探索与成效[J]. 中国石油勘探,2020,25(2):27–32. doi: 10.3969/j.issn.1672-7703.2020.02.003 XIE Yuhong, CAI Dongsheng, SUN Hansen. Exploration and effect of exploration and development integration in unconventional gas of CNOOC[J]. China Petroleum Exploration, 2020, 25(2): 27–32. doi: 10.3969/j.issn.1672-7703.2020.02.003
[21] 高德利. 大型丛式水平井工程与山区页岩气高效开发模式[J]. 天然气工业,2018,38(8):1–7. doi: 10.3787/j.issn.1000-0976.2018.08.001 GAO Deli. A high-efficiency development mode of shale gas reservoirs in mountainous areas based on large cluster horizontal well engineering[J]. Natural Gas Industry, 2018, 38(8): 1–7. doi: 10.3787/j.issn.1000-0976.2018.08.001
[22] 林家昱. 丛式水平井井眼轨道优化设计[D]. 西安: 西安石油大学, 2015. LIN Jiayu. Optimization design in cluster horizontal wells trajectory[D]. Xi’an: Xi’an Shiyou University, 2015.
[23] 孟鐾桥,周柏年,付志,等. 勺形水平井在四川长宁页岩气开发中的应用[J]. 特种油气藏,2017,24(5):165–169. doi: 10.3969/j.issn.1006-6535.2017.05.031 MENG Beiqiao, ZHOU Bainian, FU Zhi, et al. Application of spoon-shaped horizontal wells for development of shale gas in Changning, Sichuan[J]. Special Oil & Gas Reservoirs, 2017, 24(5): 165–169. doi: 10.3969/j.issn.1006-6535.2017.05.031
[24] 刘伟,何龙,胡大梁,等. 川南海相深层页岩气钻井关键技术[J]. 石油钻探技术,2019,47(6):9–14. doi: 10.11911/syztjs.2019118 LIU Wei, HE Long, HU Daliang, et al. Key technologies for deep marine shale gas drilling in Southern Sichuan[J]. Petroleum Drilling Techniques, 2019, 47(6): 9–14. doi: 10.11911/syztjs.2019118
[25] 王万庆,石仲元,付仟骞. G0-7三维水平井井组工厂化钻井工艺[J]. 石油钻采工艺,2015,37(2):27–31. WANG Wanqing, SHI Zhongyuan, FU Qianqian. Factory drilling technology for G0-7 3D horizontal well group[J]. Oil Drilling & Production Technology, 2015, 37(2): 27–31.
[26] 胡文瑞. 地质工程一体化是实现复杂油气藏效益勘探开发的必由之路[J]. 中国石油勘探,2017,22(1):1–5. doi: 10.3969/j.issn.1672-7703.2017.01.001 HU Wenrui. Geology-engineering integration: a necessary way to realize profitable exploration and development of complex reservoirs[J]. China Petroleum Exploration, 2017, 22(1): 1–5. doi: 10.3969/j.issn.1672-7703.2017.01.001
[27] 章敬. 非常规油藏地质工程一体化效益开发实践:以准噶尔盆地吉木萨尔凹陷芦草沟组页岩油为例[J]. 断块油气田,2021,28(2):151–155. ZHANG Jing. Effective development practices of geology-engineering integration on unconventional oil reservoirs: taking Lucaogou Formation shale oil in Jimsar Sag, Junggar Basin for example[J]. Fault-Block Oil & Gas Field, 2021, 28(2): 151–155.
[28] 黄浩勇,范宇,曾波,等. 长宁区块页岩气水平井组地质工程一体化[J]. 科学技术与工程,2020,20(1):175–182. doi: 10.3969/j.issn.1671-1815.2020.01.028 HUANG Haoyong, FAN Yu, ZENG Bo, et al. Geology-engineering integration of platform well in Changning Block[J]. Science Technology and Engineering, 2020, 20(1): 175–182. doi: 10.3969/j.issn.1671-1815.2020.01.028
[29] 杨恒林,乔磊,田中兰. 页岩气储层工程地质力学一体化技术进展与探讨[J]. 石油钻探技术,2017,45(2):25–31. YANG Henglin, QIAO Lei, TIAN Zhonglan. Advances in shale gas reservoir engineering and geomechanics integration technology and relevant discussions[J]. Petroleum Drilling Techniques, 2017, 45(2): 25–31.
[30] 谢军,鲜成钢,吴建发,等. 长宁国家级页岩气示范区地质工程一体化最优化关键要素实践与认识[J]. 中国石油勘探,2019,24(2):174–185. XIE Jun, XIAN Chenggang, WU Jianfa, et al. Optimal key elements of geoengineering integration in Changning National Shale Gas Demonstration Zone[J]. China Petroleum Exploration, 2019, 24(2): 174–185.
[31] 王彦祺,贺庆,龙志平. 渝东南地区页岩气钻完井技术主要进展及发展方向[J]. 油气藏评价与开发,2021,11(3):356–364. WANG Yanqi, HE Qing, LONG Zhiping. Main progress and development direction of shale gas drilling and completion technologies in Southeastern Chongqing[J]. Reservoir Evaluation and Development, 2021, 11(3): 356–364.
[32] 何治亮,聂海宽,蒋廷学. 四川盆地深层页岩气规模有效开发面临的挑战与对策[J]. 油气藏评价与开发,2021,11(2):1–11. HE Zhiliang, NIE Haikuan, JIANG Tingxue. Challenges and countermeasures of effective development with large scale of deep shale gas in Sichuan Basin[J]. Reservoir Evaluation and Development, 2021, 11(2): 1–11.
[33] TRICHEL K, FABIAN J. Understanding and managing bottom hole circulating temperature behavior in horizontal HT wells: a case study based on Haynesville horizontal wells[R]. SPE-140332-MS, 2011.
[34] 林昕,苑仁国,秦磊,等. 地质导向钻井前探技术现状及进展[J]. 特种油气藏,2021,28(2):1–10. LIN Xin, YUAN Renguo, QIN Lei, et al. Present situation and progress of geosteering drilling pre-prospecting technology[J]. Special Oil & Gas Reservoirs, 2021, 28(2): 1–10.
[35] 伍贤柱. 四川盆地威远页岩气藏高效开发关键技术[J]. 石油钻探技术,2019,47(4):1–9. doi: 10.11911/syztjs.2019074 WU Xianzhu. Key technologies in the efficient development of the Weiyuan shale gas reservoir, Sichuan Basin[J]. Petroleum Drilling Techniques, 2019, 47(4): 1–9. doi: 10.11911/syztjs.2019074
[36] 林永学,甄剑武. 威远区块深层页岩气水平井水基钻井液技术[J]. 石油钻探技术,2019,47(2):21–27. doi: 10.11911/syztjs.2019022 LIN Yongxue, ZHEN Jianwu. Water based drilling fluid technology for deep shale gas horizontal wells in Block Weiyuan[J]. Petroleum Drilling Techniques, 2019, 47(2): 21–27. doi: 10.11911/syztjs.2019022
[37] 林永学,王显光. 中国石化页岩气油基钻井液技术进展与思考[J]. 石油钻探技术,2014,42(4):7–13. LIN Yongxue, WANG Xianguang. Development and reflection of oil-based drilling fluid technology for shale gas of Sinopec[J]. Petroleum Drilling Techniques, 2014, 42(4): 7–13.
[38] 潘军,刘卫东,张金成. 涪陵页岩气田钻井工程技术进展与发展建议[J]. 石油钻探技术,2018,46(4):9–15. PAN Jun, LIU Weidong, ZHANG Jincheng. Drilling technology progress and recommendations for the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2018, 46(4): 9–15.
[39] 林永学,王显光,李荣府. 页岩气水平井低油水比油基钻井液研制及应用[J]. 石油钻探技术,2016,44(2):28–33. doi: 10.11911/syztjs.201602005 LIN Yongxue, WANG Xianguang, LI Rongfu. Development of oil-based drilling fluid with low oil-water ratio and its application to drilling horizontal shale gas wells[J]. Petroleum Drilling Techni-ques, 2016, 44(2): 28–33. doi: 10.11911/syztjs.201602005
[40] 路保平,丁士东. 中国石化页岩气工程技术新进展与发展展望[J]. 石油钻探技术,2018,46(1):1–9. LU Baoping, DING Shidong. New progress and development prospect in shale gas engineering technologies of Sinopec[J]. Petroleum Drilling Techniques, 2018, 46(1): 1–9.
[41] 路保平. 中国石化石油工程技术新进展与发展建议[J]. 石油钻探技术,2021,49(1):1–10. doi: 10.11911/syztjs.2021001 LU Baoping. New progress and development proposals of Sinopec’s petroleum engineering technologies[J]. Petroleum Drilling Techniques, 2021, 49(1): 1–10. doi: 10.11911/syztjs.2021001
[42] 丁士东,赵向阳. 中国石化重点探区钻井完井技术新进展与发展建议[J]. 石油钻探技术,2020,48(4):11–20. doi: 10.11911/syztjs.2020069 DING Shidong, ZHAO Xiangyang. New progress and development suggestions for drilling and completion technologies in Sinopec key exploration areas[J]. Petroleum Drilling Techniques, 2020, 48(4): 11–20. doi: 10.11911/syztjs.2020069
[43] 臧艳彬. 川东南地区深层页岩气钻井关键技术[J]. 石油钻探技术,2018,46(3):7–12. ZANG Yanbin. Key drilling technology for deep shale gas reservoirs in the Southeastern Sichuan Region[J]. Petroleum Drilling Techniques, 2018, 46(3): 7–12.
[44] 王建华,张家旗,谢盛,等. 页岩气油基钻井液体系性能评估及对策[J]. 钻井液与完井液,2019,36(5):555–559. doi: 10.3969/j.issn.1001-5620.2019.05.005 WANG Jianhua, ZHANG Jiaqi, XIE Sheng, et al. Evaluation and improvement of the performance of oil base drilling fluids for shale gas drilling[J]. Drilling Fluid & Completion Fluid, 2019, 36(5): 555–559. doi: 10.3969/j.issn.1001-5620.2019.05.005
[45] 胡祖彪,张建卿,王清臣,等. 长庆致密气超长水平段水基钻井液技术[J]. 钻井液与完井液,2021,38(2):183–188. doi: 10.3969/j.issn.1001-5620.2021.02.009 HU Zubiao, ZHANG Jianqing, WANG Qingchen, et al. Water base drilling fluid technology for ultra-long horizontal drilling in a tight gas well in Changqing Oilfield[J]. Drilling Fluid & Completion Fluid, 2021, 38(2): 183–188. doi: 10.3969/j.issn.1001-5620.2021.02.009
[46] 蒙华军,张矿生,谢文敏,等. 长庆致密气藏4 000 m水平段钻井技术实践与认识[J]. 钻采工艺,2021,44(4):119–122. doi: 10.3969/J.ISSN.1006-768X.2021.04.27 MENG Huajun, ZHANG Kuangsheng, XIE Wenmin, et al. Practice and recognition of drilling technology in 4 000 m horizontal section of tight gas reservoir in Changqing[J]. Drilling & Production Technology, 2021, 44(4): 119–122. doi: 10.3969/J.ISSN.1006-768X.2021.04.27
[47] 李骥然,赵博,米凯夫,等. 旋转下套管技术在川渝页岩气开发中的应用[J]. 石化技术,2020,27(7):90–92. doi: 10.3969/j.issn.1006-0235.2020.07.050 LI Jiran, ZHAO Bo, MI Kaifu, et al. Application of top drive casing running technology in Sichuan and Chongqing shale gas exploration and development[J]. Petrochemical Industry Technology, 2020, 27(7): 90–92. doi: 10.3969/j.issn.1006-0235.2020.07.050
[48] 张国田,邹连阳,黄衍福,等. 顶驱下套管装置的研制[J]. 石油机械,2008,36(9):82–84. ZHANG Guotian, ZOU Lianyang, HUANG Yanfu, et al. Development of top-drive casing-running device[J]. China Petroleum Machinery, 2008, 36(9): 82–84.
[49] 江乐,梅明佳,段宏超,等. 华H50-7井超4 000 m水平段套管下入研究与应用[J]. 石油机械,2021,49(8):30–38. JIANG Le, MEI Mingjia, DUAN Hongchao, et al. Investigation into casing running in over 4 000 m long horizontal-section of Well Hua H50-7[J]. China Petroleum Machinery, 2021, 49(8): 30–38.
[50] 焦亚军, 陈安环, 何方雨, 等. 漂浮下套管技术在浅层页岩气水平井中的应用及优化[J]. 天然气工业, 2021, 41(增刊1): 177–181. JIAO Yajun, CHEN Anhuan, HE Fangyu, et al. Application and optimization of floating casing running technology in shallow shale gas horizontal wells[J]. Natural Gas Industry, 2021, 41(supplement 1): 177–181.
[51] 刘斌辉, 唐守勇, 曲从锋, 等. 页岩气水平井固井趾端压裂滑套的研制[J]. 天然气工业, 2021, 41(增刊1): 192–196. LIU Binhui, TANG Shouyong, QU Congfeng, et al. Development of toe fracturing sleeve for shale gas horizontal well cementing[J]. Natural Gas Industry, 2021, 41(supplement 1): 192–196.
[52] 赵常青,胡小强,张永强,等. 页岩气长水平井段防气窜固井技术[J]. 天然气工业,2017,37(10):59–65. doi: 10.3787/j.issn.1000-0976.2017.10.008 ZHAO Changqing, HU Xiaoqiang, ZHANG Yongqiang, et al. Anti-channeling cementing technology for long horizontal sections of shale gas wells[J]. Natural Gas Industry, 2017, 37(10): 59–65. doi: 10.3787/j.issn.1000-0976.2017.10.008
[53] 黄海鸿. 页岩气水平井固井水泥浆体系研究[D]. 成都: 西南石油大学, 2014. HUANG Haihong. Cementing slurry system of horizontal well in shale gas[D]. Chengdu: Southwest Petroleum University, 2014.
[54] 赵常青,谭宾,曾凡坤,等. 长宁—威远页岩气示范区水平井固井技术[J]. 断块油气田,2014,21(2):256–258. ZHAO Changqing, TAN Bin, ZENG Fankun, et al. Cementing technology of horizontal well in Changning–Weiyuan shale gas reservoir[J]. Fault-Block Oil & Gas Field, 2014, 21(2): 256–258.
[55] 陈雷,杨红歧,肖京男,等. 杭锦旗区块漂珠–氮气超低密度泡沫水泥固井技术[J]. 石油钻探技术,2018,46(3):34–38. CHEN Lei, YANG Hongqi, XIAO Jingnan, et al. Ultra-low density hollow microspheres-nitrogen foamed cementing technology in Block Hangjinqi[J]. Petroleum Drilling Techniques, 2018, 46(3): 34–38.
[56] 赵福豪,黄维安,雍锐,等. 地质工程一体化研究与应用现状[J]. 石油钻采工艺,2021,43(2):131–138. ZHAO Fuhao, HUANG Weian, YONG Rui, et al. Research and application status of geology-engineering integration[J]. Oil Drilling & Production Technology, 2021, 43(2): 131–138.
-
期刊类型引用(2)
1. 王江帅, 李军, 任美鹏, 柳贡慧, 杨宏伟, 骆奎栋. 控压钻井环空多相流控压响应时间研究. 石油机械. 2019(05): 61-65 . 百度学术
2. 费旻, 林怀蔚, 邢玮, 李云海. 基于MATLAB的线性控制系统稳定性仿真研究. 科技资讯. 2017(30): 34-36 . 百度学术
其他类型引用(0)