低压耗增强型水力振荡器的研制与现场试验

李建亭, 胡金建, 罗恒荣

李建亭, 胡金建, 罗恒荣. 低压耗增强型水力振荡器的研制与现场试验[J]. 石油钻探技术, 2022, 50(1): 71-75. DOI: 10.11911/syztjs.2021137
引用本文: 李建亭, 胡金建, 罗恒荣. 低压耗增强型水力振荡器的研制与现场试验[J]. 石油钻探技术, 2022, 50(1): 71-75. DOI: 10.11911/syztjs.2021137
LI Jianting, HU Jinjian, LUO Hengrong. Development and Field Tests of an Enhanced Hydraulic Oscillator with Low Pressure Loss[J]. Petroleum Drilling Techniques, 2022, 50(1): 71-75. DOI: 10.11911/syztjs.2021137
Citation: LI Jianting, HU Jinjian, LUO Hengrong. Development and Field Tests of an Enhanced Hydraulic Oscillator with Low Pressure Loss[J]. Petroleum Drilling Techniques, 2022, 50(1): 71-75. DOI: 10.11911/syztjs.2021137

低压耗增强型水力振荡器的研制与现场试验

详细信息
    作者简介:

    李建亭(1972—),男,河南中牟人,1996年毕业于大庆石油学院矿业机械专业,高级工程师,主要从事石油装备、钻井工具的研制和管理工作。E-mail: 421173989@qq.com

  • 中图分类号: TE921+.2

Development and Field Tests of an Enhanced Hydraulic Oscillator with Low Pressure Loss

  • 摘要: 应用水力振荡器可以解决复杂结构井钻井过程中存在的摩阻大、托压严重等问题,但常规水力振荡器压耗高,易使地面机泵超负荷运转而出现故障。为此,通过采取在振荡短节中增加1个固定活塞、增大偏心阀过流孔直径、在花键芯轴的花键端部和底部过渡位置增加过流槽等措施,对常规水力振荡器的结构进行了优化,增大了活塞反馈面积和过流面积,降低了水力振荡器的能量损耗,研制了低压耗增强型水力振荡器。室内测试结果表明,该水力振荡器的压降明显减小,达到了设计要求。该水力振荡器在胜利油田义184-斜37井进行了现场试验,各项指标满足设计和使用要求,解决了托压问题,提高了机械钻速,且压降较常规水力振荡器有明显减小。研究结果表明,低压耗增强型水力振荡器的压降小,可有效解决托压严重、摩阻大的难题,满足复杂结构井安全高效钻井的需求。
    Abstract: Hydraulic oscillators are effective against high friction and serious back pressure during the drilling of wells with complex structures. However, conventional hydraulic oscillators suffer from high pressure loss, which leads to the failure of pumps on the ground due to overloaded operations. For this reason, conventional hydraulic oscillators were optimized structurally by a variety of approaches, including adding a fixed piston in the oscillation sub, increasing the diameter of the flow hole of the eccentric valve, arranging a flow duct at the transition area between the spline end and the bottom of the spline shaft. These measures increased the feedback area and flow area of the piston and reduced the energy loss of hydraulic oscillators. In this way, an enhanced hydraulic oscillator with low pressure loss was developed. Laboratory test results indicated that the hydraulic oscillator had measurably reduced the pressure drop, meeting design requirements. In addition, field tests were carried out in Well Yi184-X37 of Shengli Oilfield. All indicators satisfied design and operation requirements. The developed hydraulic oscillator addressed back pressure issues, increased the rate of penetration (ROP), and demonstrated a pressure drop much lower than that of conventional hydraulic oscillators. The research results show that the enhanced hydraulic oscillator with low pressure loss have a low pressure drop and can effectively solve the difficulties of serious back pressure and high friction, thus meeting the needs of safe and efficient drilling of wells with complex structures.
  • 图  1   新型水力振荡器的基本结构

    Figure  1.   Basic structure of the novel hydraulic oscillator

    图  2   偏心阀盘过流面积与压降的关系示意

    Figure  2.   Relationship between flow area of eccentric valve and pressure drop

    图  3   新型水力振荡器和常规水力振荡器的振荡短节示意

    Figure  3.   Oscillation sub of the novel oscillator and conventional oscillator

    图  4   新型水力振荡器振荡短节花键优化示意

    Figure  4.   Spline optimization of oscillation sub of the novel hydraulic oscillator

    图  5   新型水力振荡器室内试验流程

    Figure  5.   Laboratory test process of the novel hydraulic oscillator

    表  1   新型水力振荡器室内测试结果

    Table  1   Results of laboratory test of the novel hydraulic oscillator

    序号排量/(L·s–1振动频率/Hz振幅/mm泵压/MPa
    11381.50.9
    218102.31.2
    325133.01.8
    428154.52.1
    538165.02.5
    下载: 导出CSV

    表  2   新型水力振荡器应用效果

    Table  2   Application effect of the novel hydraulic oscillator

    钻进井段/m钻压/
    kN
    转速/
    (r·min–1
    排量/
    (L·s–1
    立压/
    MPa
    钻时/
    (min·m–1
    2 077.16~2 495.0040~8060341620~30
    2 495.00~3 319.0060~8060~7034184~7
    下载: 导出CSV
  • [1] 陶兴华. 提高深井钻井速度的有效技术方法[J]. 石油钻采工艺,2001,23(5):4–8. doi: 10.3969/j.issn.1000-7393.2001.05.002

    TAO Xinghua. Effective measures for improving the penetration rate of deep well[J]. Oil Drilling & Production Technology, 2001, 23(5): 4–8. doi: 10.3969/j.issn.1000-7393.2001.05.002

    [2] 李博. 水力振荡器的研制与现场试验[J]. 石油钻探技术,2014,42(1):111–113. doi: 10.3969/j.issn.1001-0890.2014.01.022

    LI Bo. Development and pilot test of hydro-oscillator[J]. Petroleum Drilling Techniques, 2014, 42(1): 111–113. doi: 10.3969/j.issn.1001-0890.2014.01.022

    [3] 石崇东,党克军,张军,等. 水力振荡器在苏36-8-18H井的应用[J]. 石油机械,2012,40(3):35–38.

    SHI Chongdong, DANG Kejun, ZHANG Jun, et al. Application of the hydraulic oscillator in Well 36-8-18H of the Sulige Block[J]. China Petroleum Machinery, 2012, 40(3): 35–38.

    [4] 刘志坚,李榕. ϕ172 mm水力振荡器在川西中浅水平井的应用[J]. 天然气技术与经济,2012,6(6):37–39.

    LIU Zhijian, LI Rong. Application of hydraulic oscillator withϕ172 mm to medium-to-shallow horizontal wells, Western Sichuan Basin[J]. Natural Gas Technology and Economy, 2012, 6(6): 37–39.

    [5] 聂云飞,朱渊,范萧,等. 自激式涡流控制水力振荡器研制与应用[J]. 石油钻探技术,2019,47(5):74–79.

    NIE Yunfei, ZHU Yuan, FAN Xiao, et al. Development and application of self-excited vortex control hydraulic oscillator[J]. Petroleum Drilling Techniques, 2019, 47(5): 74–79.

    [6] 张建国,宋硕,马继业,等. 一种自激式水力振荡器特性的研究及应用[J]. 石油钻探技术,2009,37(5):10–14. doi: 10.3969/j.issn.1001-0890.2009.05.003

    ZHANG Jianguo, SONG Shuo, MA Jiye, et al. Investigation and application of a self-excited hydro-oscillator in oilfields[J]. Petroleum Drilling Techniques, 2009, 37(5): 10–14. doi: 10.3969/j.issn.1001-0890.2009.05.003

    [7] 许京国,尤军,陶瑞东,等. 自激振荡式冲击钻井工具在大港油田的应用[J]. 石油钻探技术,2013,41(4):116–119. doi: 10.3969/j.issn.1001-0890.2013.04.025

    XU Jingguo, YOU Jun, TAO Ruidong, et al. Application of self-oscillating impact drilling tool in Dagang Oilfield[J]. Petroleum Drilling Techniques, 2013, 41(4): 116–119. doi: 10.3969/j.issn.1001-0890.2013.04.025

    [8] 雷鹏,倪红坚,王瑞和,等. 自激振荡式旋冲工具在深井超深井中的试验应用[J]. 石油钻探技术,2013,41(6):40–43. doi: 10.3969/j.issn.1001-0890.2013.06.008

    LEI Peng, NI Hongjian, WANG Ruihe, et al. Field test of self-excited vibration rotary percussion drilling tool in deep and ultra-deep wells[J]. Petroleum Drilling Techniques, 2013, 41(6): 40–43. doi: 10.3969/j.issn.1001-0890.2013.06.008

    [9] 黄崇君,谢意,刘伟,等. 水力振荡器在川渝地区水平井的应用[J]. 钻采工艺,2015,38(2):101–102,116. doi: 10.3969/J.ISSN.1006-768X.2015.02.29

    HUANG Chongjun, XIE Yi, LIU Wei, et al. Application of hydraulic oscillator in horizontal wells in Sichuan and Chongqing Area[J]. Drilling & Production Technology, 2015, 38(2): 101–102,116. doi: 10.3969/J.ISSN.1006-768X.2015.02.29

    [10] 王传鸿,邹刚,周歆,等. 自激式水力振荡器结构性能及其振动特性研究[J]. 石油机械,2020,48(11):16–21.

    WANG Chuanhong, ZOU Gang, ZHOU Xin, et al. Research on design features and vibration characteristics of self-excited hydraulic oscillator[J]. China Petroleum Machinery, 2020, 48(11): 16–21.

    [11] 吴志勇,李军,倪红坚,等. 水力振荡器性能影响因素研究[J]. 石油机械,2018,46(3):7–11.

    WU Zhiyong, LI Jun, NI Hongjian, et al. Research on the influencing factors of performance of hydraulic oscillator[J]. China Petroleum Machinery, 2018, 46(3): 7–11.

    [12] 罗朝东,鄢标,夏成宇,等. 水力振荡器性能影响因素试验研究[J]. 石油机械,2016,44(1):25–28.

    LUO Chaodong, YAN Biao, XIA Chengyu, et al. Experimental study on the factors impacting the performance of the hydraulic oscillator[J]. China Petroleum Machinery, 2016, 44(1): 25–28.

    [13] 刘天科. 自激振荡式旋转冲击钻井工具在胜利油田的应用[J]. 石油钻采工艺,2012,34(4):54–56. doi: 10.3969/j.issn.1000-7393.2012.04.015

    LIU Tianke. Application of self-oscillating rotary percussion drilling tools in Shengli Oilfield[J]. Oil Drilling & Production Technology, 2012, 34(4): 54–56. doi: 10.3969/j.issn.1000-7393.2012.04.015

    [14] 李博,王羽曦,孙则鑫,等. ϕ178型水力振荡器研制与应用[J]. 石油矿场机械,2013,42(8):55–57. doi: 10.3969/j.issn.1001-3482.2013.08.015

    LI Bo, WANG Yuxi, SUN Zexin, et al. Development and application of ϕ178 hydro-oscillator[J]. Oil Field Equipment, 2013, 42(8): 55–57. doi: 10.3969/j.issn.1001-3482.2013.08.015

    [15] 明瑞卿,张时中,王海涛,等. 国内外水力振荡器的研究现状及展望[J]. 石油钻探技术,2015,43(5):116–122.

    MING Ruiqing, ZHANG Shizhong, WANG Haitao, et al. Research status and prospect of hydraulic oscillator worldwide[J]. Petroleum Drilling Techniques, 2015, 43(5): 116–122.

    [16] 王敏生,王智锋,李作会,等. 水力脉冲式钻井工具的研制与应用[J]. 石油机械,2006,34(5):27–28. doi: 10.3969/j.issn.1001-4578.2006.05.008

    WANG Minsheng, WANG Zhifeng, LI Zuohui, et al. Development and application of a hydraulic-pulse drilling tool[J]. China Petroleum Machinery, 2006, 34(5): 27–28. doi: 10.3969/j.issn.1001-4578.2006.05.008

    [17]

    SKYLES L P, AMIRASLANI Y A, WILHOIT J E. Converting static friction to kinetic friction to drill further and faster in directional holes[R]. SPE 151221, 2012.

    [18] 张辉,吴仲华,蔡文军. 水力振荡器的研制及现场试验[J]. 石油机械,2014,42(6):12–15. doi: 10.3969/j.issn.1001-4578.2014.06.003

    ZHANG Hui, WU Zhonghua, CAI Wenjun. Development and field testing of hydraulic oscillator[J]. China Petroleum Machinery, 2014, 42(6): 12–15. doi: 10.3969/j.issn.1001-4578.2014.06.003

  • 期刊类型引用(3)

    1. 张小佳,刘文红,申昭熙,钱征华,张应红,周海洋. 基于RFID技术的石油钻具管理系统研制. 石油钻探技术. 2022(06): 107-111 . 本站查看
    2. 崔龙兵,胡亮,席步祥,阮臣良,程光明,赵建军. 射频识别随钻扩眼器的研制与应用. 钻采工艺. 2020(04): 71-74+10 . 百度学术
    3. 高胜,滕向松,张丽巍,刘跃宝,范立华. 井下无线射频识别系统作业环境影响因素分析. 石油机械. 2019(01): 86-92 . 百度学术

    其他类型引用(0)

图(5)  /  表(2)
计量
  • 文章访问数:  499
  • HTML全文浏览量:  279
  • PDF下载量:  95
  • 被引次数: 3
出版历程
  • 收稿日期:  2021-07-14
  • 修回日期:  2021-11-19
  • 录用日期:  2021-12-22
  • 网络出版日期:  2022-01-03
  • 刊出日期:  2022-03-06

目录

    /

    返回文章
    返回