Development and Performance Evaluation of a Graphene ReinforcedAluminum-Based Soluble Ball Seat
-
摘要: 为了解决水平井多级投球滑套球座在钻除过程中存在的钻除效率低、钻除不彻底影响作业工具重入等问题,研制了石墨烯增强铝基复合材料用于制备滑套可溶球座。利用石墨烯及碳化硅陶瓷颗粒增强铝合金,结合粉末冶金方法,制备得到石墨烯增强铝基复合材料,其具有高强度、高硬度和在盐水环境下实现自行快速溶解等特点,屈服强度达469 MPa,表面硬度达170 HBW。采用石墨烯增强铝基复合材料加工的可溶球座,经砂比30%的含砂压裂液在排量4 m3/min条件下冲蚀26 h后,仍然具备密封承压能力,质量仅减少2.1%;在温度90 ℃、质量分数4%的KCl溶液中浸泡32.5 h后能够完全溶解。现场试验表明,石墨烯增强铝基可溶球座满足多级滑套压裂大排量、高砂比和长时间作业要求,压裂后能在井下液体环境下自行溶解实现井筒全通径。研制的石墨烯增强铝基可溶球座为储层二次改造提供了清洁、安全的井筒条件。Abstract: The re-entry of tools in horizontal wells can be negativelly affected by problems in removing the ball seat in multistage ball-drop sliding sleeves such as low drilling efficiency and incomplete removal. In order to overcome that, a graphene reinforced aluminum-based composite was developed to make soluble ball seat with sliding sleeve. By using graphene and silicon carbide ceramic particles and with powder metallurgy, a graphene reinforced aluminum-based composite was obtained. The composite possess characteristics of high strength, high hardness and self- rapid dissolution in saline environment, with yield strength of 469 MPa and surface hardness up to 170 HBW. The soluble ball seat made of graphene-reinforced aluminum-based composite could still maintain sealing and pressure-bearing capacity when eroded by sand-containing fracturing fluid with a sand ratio of 30% at a flow rate of 4 m3/min for 26 hrs, and its overall weight was only reduced by 2.1%. In addition, the ball seat could completely be dissolved in the 4% KCl solution at 90 ℃ when soaked in the solution for 32.5 hrs. The field test showed that the developed graphene reinforced aluminum-based soluble ball seat could satisfy the requirements of multistage sliding sleeve fracturing with high flow rate, high sand ratio and long operation time. After fracturing, the ball seat can dissolve by itself in downhole liquid environment to achieve a full-diameter borehole. The developed graphene reinforced aluminum-based soluble ball seat can provide clean and safe wellbore conditions for the second stimulation of the reservoir.
-
-
-
[1] 赵振峰,李楷,赵鹏云,等. 鄂尔多斯盆地页岩油体积压裂技术实践与发展建议[J]. 石油钻探技术,2021,49(4):85–91. doi: 10.11911/syztjs.2021075 ZHAO Zhenfeng, LI Kai, ZHAO Pengyun, et al. Practice and development suggestions for volumetric fracturing technology for shale oil in the Ordos Basin[J]. Petroleum Drilling Techniques, 2021, 49(4): 85–91. doi: 10.11911/syztjs.2021075
[2] 张红杰,刘欣佳,张潇,等. 煤系储层综合开发中的压裂射孔方案优化研究[J]. 特种油气藏,2021,28(1):154–160. ZHANG Hongjie, LIU Xinjia, ZHANG Xiao, et al. Study on the optimization of the fracturing perforation scheme in the comprehensive development of coal-bearing reservoirs[J]. Special Oil & Gas Reservoirs, 2021, 28(1): 154–160.
[3] 任国富,赵粉霞,冯长青,等. 套管球座压裂工具研制与试验[J]. 钻采工艺,2017,40(5):76–77,80. doi: 10.3969/J.ISSN.1006-768X.2017.05.23 REN Guofu, ZHAO Fenxia, FENG Changqing, et al. Development and trial of casing ball-seat fracturing tool[J]. Drilling & Production Technology, 2017, 40(5): 76–77,80. doi: 10.3969/J.ISSN.1006-768X.2017.05.23
[4] 杨同玉,魏辽,李强,等. 全自溶分段压裂滑套的研制与应用[J]. 特种油气藏,2019,26(3):153–157. doi: 10.3969/j.issn.1006-6535.2019.03.029 YANG Tongyu, WEI Liao, LI Qiang, et al. Development and application of fully auto-soluble multi-stage fracturing sliding sleeve[J]. Special Oil & Gas Reservoirs, 2019, 26(3): 153–157. doi: 10.3969/j.issn.1006-6535.2019.03.029
[5] 刘恩洋,于思荣,纪志康,等. 漂珠/镁合金复合材料可溶压裂球的制备及组织性能研究[J]. 稀有金属,2019,43(8):792–799. LIU Enyang, YU Sirong, JI Zhikang, et al. Preparation, microstructure and properties of fly ash cenosphere/Mg alloy composites for degradable fracturing ball applications[J]. Chinese Journal of Rare Metals, 2019, 43(8): 792–799.
[6] 郭鸣,詹鸿运,冯强,等. 高强度可溶桥塞结构设计与应用[J]. 石油钻采工艺,2020,42(1):52–55,61. GUO Ming, ZHAN Hongyun, FENG Qiang, et al. Design and application of high-strength dissolvable bridge plug[J]. Oil Drilling & Production Technology, 2020, 42(1): 52–55,61.
[7] 安杰,唐梅荣,张矿生,等. 致密油水平井全可溶桥塞体积压裂技术评价与应用[J]. 特种油气藏,2019,26(5):159–163. doi: 10.3969/j.issn.1006-6535.2019.05.027 AN Jie, TANG Meirong, ZHANG Kuangsheng, et al. Evaluation and application of volume fracturing with full-soluble plug in tight oil horizontal well[J]. Special Oil & Gas Reservoirs, 2019, 26(5): 159–163. doi: 10.3969/j.issn.1006-6535.2019.05.027
[8] 钟森,谭明文,赵祚培,等. 永川深层页岩气藏水平井体积压裂技术[J]. 石油钻采工艺,2019,41(4):529–533. ZHONG Sen, TAN Mingwen, ZHAO Zuopei, et al. Volume fracturing for horizontal wells in Yongchuan deep shale gas reservoirs[J]. Oil Drilling & Production Technology, 2019, 41(4): 529–533.
[9] 钟林,冯桂弘,朱和明,等. 压裂球座结构优化分析及耐冲蚀研究[J]. 表面技术,2021,50(6):213–219,228. ZHONG Lin, FENG Guihong, ZHU Heming, et al. Structural optimization analysis and erosion resistance study of frac ball seat[J]. Surface Technology, 2021, 50(6): 213–219,228.
[10] 邹高鹏,贺显聪,孙滨洲,等. 微纳石墨烯片增强铝合金的力学性能及其机理[J]. 中国有色金属学报,2017,27(11):2228–2235. ZOU Gaopeng, HE Xiancong, SUN Binzhou, et al. Mechanics performances and mechanism of aluminum alloy reinforced by graphene nanosheets[J]. The Chinese Journal of Nonferrous Metals, 2017, 27(11): 2228–2235.
[11] 赵乃勤,刘兴海,蒲博闻. 多维度碳纳米相增强铝基复合材料研究进展[J]. 金属学报,2019,55(1):1–15. doi: 10.11900/0412.1961.2018.00456 ZHAO Naiqin, LIU Xinghai, PU Bowen. Progress on multi-dimensional carbon nanomaterials reinforced aluminum matrix composites: a review[J]. Acta Metallurgica Sinica, 2019, 55(1): 1–15. doi: 10.11900/0412.1961.2018.00456
-
期刊类型引用(1)
1. 李新发,李婷,刘博峰,张峰,肖志明,王浩帆. 基于压裂监测的致密储层甜点识别. 断块油气田. 2020(05): 603-607 . 百度学术
其他类型引用(0)