仿生PDC齿旋转破岩时的温度场和破岩特性模拟研究

吴泽兵, 席凯凯, 赵海超, 黄海, 张文超, 杨晨娟

吴泽兵, 席凯凯, 赵海超, 黄海, 张文超, 杨晨娟. 仿生PDC齿旋转破岩时的温度场和破岩特性模拟研究[J]. 石油钻探技术, 2022, 50(2): 71-77. DOI: 10.11911/syztjs.2021114
引用本文: 吴泽兵, 席凯凯, 赵海超, 黄海, 张文超, 杨晨娟. 仿生PDC齿旋转破岩时的温度场和破岩特性模拟研究[J]. 石油钻探技术, 2022, 50(2): 71-77. DOI: 10.11911/syztjs.2021114
WU Zebing, XI Kaikai, ZHAO Haichao, HUANG Hai, ZHANG Wenchao, YANG Chenjuan. Simulation Study on Temperature Field and Rock Breaking Characteristics of the Bionic PDC Cutter in Rotating State[J]. Petroleum Drilling Techniques, 2022, 50(2): 71-77. DOI: 10.11911/syztjs.2021114
Citation: WU Zebing, XI Kaikai, ZHAO Haichao, HUANG Hai, ZHANG Wenchao, YANG Chenjuan. Simulation Study on Temperature Field and Rock Breaking Characteristics of the Bionic PDC Cutter in Rotating State[J]. Petroleum Drilling Techniques, 2022, 50(2): 71-77. DOI: 10.11911/syztjs.2021114

仿生PDC齿旋转破岩时的温度场和破岩特性模拟研究

基金项目: 陕西省重点研发计划项目“针对陕西页岩气地层的混合钻头破岩机理研究及性能评估方法”(2018KW-12) 资助
详细信息
    作者简介:

    吴泽兵(1967—),男,湖北公安人,1990年毕业于西南石油学院石油与天然气储运工程专业,1997年获西南石油学院博士学位,教授,硕士生导师,主要从事石油钻头智能CAD/CAE/CAM 、智能钻机和钻井优化与自动化等方面的研究。E-mail:zbwu@xsyu.edu.cn

  • 中图分类号: TE243+.1

Simulation Study on Temperature Field and Rock Breaking Characteristics of the Bionic PDC Cutter in Rotating State

  • 摘要: 针对常规PDC钻头破岩效率低、钻头泥包和使用寿命短等问题,以穿山甲鳞片、蝼蛄爪趾、鲨鱼牙齿和扇贝壳作为仿生原型,从多个维度进行结构仿生,设计了一种新型耦合仿生PDC齿。采用有限元法、弹塑性力学等方法,建立了仿生PDC齿的破岩仿真模型,利用有限元软件ABAQUS的温度–位移耦合显式侵彻接触算法和显式动力学模块,研究了仿生PDC齿破岩过程中温度场的变化规律和破岩方式,并与常规PDC齿进行了模拟对比。模拟结果发现:仿生PDC齿与常规PDC齿在破岩时的温度传递过程存在较大差异;仿生PDC齿能够防止钻头泥包的产生,且能够减少摩擦热的集聚,避免高温热失效,延长其使用寿命;仿生PDC齿破岩速度更快,对岩石的破碎更加彻底。研究表明,仿生PDC钻头的现场适用性较好,具有较好的现场推广应用价值。
    Abstract: Some drawbacks exist in conventional polycrystalline diamond compact (PDC) bits such as low rock breaking efficiency, bit balling, and short service life. To solve these problems, a new coupling bionic PDC cutter was designed by taking the scales of pangolins, claw toes of mole crickets, shark teeth, and scallop shells as bionic prototypes to construct bionic structures in multi-dimensions. Finite element and elastoplastic mechanics were employed to build rock breaking simulation model of bionic PDC cutters. The finite element software ABAQUS was used to study the variation law of the temperature field and rock breaking modes of bionic PDC cutters during rock breaking by temperature-displacement coupled explicit penetration contact algorithm and explicit dynamics module. The comparative simulation shows that bionic PDC cutters differed greatly with the conventional PDC cutters in the temperature transfer process during rock breaking. Bionic PDC cutters could prevent bit balling, reduce the accumulation of friction heat, avoid high-temperature thermal failure, and prolong the service life. Moreover, Bionic PDC cutters featured fast speed and thorough rock breaking. The research verifies that bionic PDC bits have good practicability and show great values in promotion and application in the field.
  • 图  1   新型仿生PDC齿结构

    Figure  1.   Structure of new type bionic PDC cutter

    图  2   切削角示意

    Figure  2.   Cutting angle

    图  3   PDC齿运动轨迹

    Figure  3.   Motion trajectory of PDC cutter

    图  4   PDC齿-岩石网格划分结果

    Figure  4.   Grid division result of PDC bit and rock

    图  5   PDC齿破碎砂岩2.2 s时的应力云图

    Figure  5.   Stress nephogram of PDC cutters in sandstone breaking when t = 2.2 s

    图  6   PDC齿破碎砂岩1.0 s时表面的温度场云图

    Figure  6.   Temperature field nephogram of the PDC cutter surfaces in sandstone breaking when t = 1.0 s

    图  7   PDC齿破碎砂岩4.0 s时表面的温度场云图

    Figure  7.   Temperature field nephogram of the PDC cutter surfaces in sandstone breaking when t = 4.0 s

    图  8   PDC齿表面的线速度分布云图

    Figure  8.   Linear velocity distribution nephogram of PDC cutter surfaces

    图  9   2种PDC齿某节点温度随时间变化的曲线

    Figure  9.   Change curves of temperature with time at a node of 2 PDC cutters

    图  10   钻速对节点温度的影响曲线

    Figure  10.   Influence curve of rate of penetration (ROP) on node temperature change

    图  11   转速对节点温度的影响曲线

    Figure  11.   Influence curve of rotating speed on node temperature change

    图  12   岩石种类对节点温度的影响曲线

    Figure  12.   Influence curve of rock type on node temperature change

    图  13   PDC齿破碎砂岩2.2 s时岩石表面的等效应力云图

    Figure  13.   Equivalent stress nephogram of rock surfaces in sandstone breaking with a PDC cutter when t = 2.2 s

    图  14   PDC齿破碎砂岩4.0 s时岩石表面的等效应力云图

    Figure  14.   Equivalent stress nephogram of rock surfaces in sandstone breaking with a PDC cutter when t = 4.0 s

    表  1   有限元分析所涉及的参数

    Table  1   Parameters involved in finite element analysis

    材料弹性模量/GPa密度/(g·cm–3热导率/(W·m–1·℃–1比热容/(J·kg–1·℃–1热膨胀系数/℃–1泊松比
    PDC层890.03.51543.07902.5×10–60.07
    硬质合金579.015.00 100.02305.2×10–60.22
    砂岩 13.62.65 3.58005.2×10–70.30
    花岗岩 40.02.80 4.01 260 6.3×10–70.25
    下载: 导出CSV
  • [1] 娄新见,何东,韩霖,等. 仿生非光滑PDC片钻头设计与应用[J]. 石油天然气学报,2012,34(10):148–152,172. doi: 10.3969/j.issn.1000-9752.2012.10.036

    LOU Xinjian, HE Dong, HAN Lin, et al. Design and application of bionic and non-smooth PDC compact bits[J]. Journal of Oil and Gas Technology, 2012, 34(10): 148–152,172. doi: 10.3969/j.issn.1000-9752.2012.10.036

    [2] 高科,孙友宏,高润峰,等. 仿生非光滑理论在钻井工程中的应用与前景[J]. 石油勘探与开发,2009,36(4):519–522,540. doi: 10.3321/j.issn:1000-0747.2009.04.018

    GAO Ke, SUN Youhong, GAO Runfeng, et al. Application and prospect of bionic non-smooth theory in drilling engineering[J]. Petroleum Exploration and Development, 2009, 36(4): 519–522,540. doi: 10.3321/j.issn:1000-0747.2009.04.018

    [3] 任露泉,杨卓娟,韩志武. 生物非光滑耐磨表面仿生应用研究展望[J]. 农业机械学报,2005,36(7):144–147. doi: 10.3969/j.issn.1000-1298.2005.07.037

    REN Luquan, YANG Zhuojuan, HAN Zhiwu. Non-smooth wearable surfaces of living creatures and their bionic application[J]. Transactions of the Chinese Society for Agricultural Machinery, 2005, 36(7): 144–147. doi: 10.3969/j.issn.1000-1298.2005.07.037

    [4] 邓嵘,李勇. PDC钻头切削齿破岩温度场有限元仿真分析[J]. 石油机械,2012,40(12):37–42.

    DENG Rong, LI Yong. Simulation analysis of temperature field for PDC bit cutter rock breaking[J]. China Petroleum Machinery, 2012, 40(12): 37–42.

    [5] 邹德永,郭玉龙,赵建,等. 锥形PDC单齿破岩试验研究[J]. 石油钻探技术,2015,43(1):122–125.

    ZOU Deyong, GUO Yulong, ZHAO Jian, et al. Experimental study on rock breaking of conical PDC cutter[J]. Petroleum Drilling Techniques, 2015, 43(1): 122–125.

    [6] 王滨,李军,邹德永,等. 强研磨性硬岩PDC钻头磨损机理及磨损分布规律研究[J]. 特种油气藏,2018,25(4):149–153. doi: 10.3969/j.issn.1006-6535.2018.04.030

    WANG Bin, LI Jun, ZOU Deyong, et al. Mechanisms and distribution pattern of abrasions on PDC bits for highly-abrasive hard-rock[J]. Special Oil & Gas Reservoirs, 2018, 25(4): 149–153. doi: 10.3969/j.issn.1006-6535.2018.04.030

    [7] 彭齐,周英操,周波,等. 凸脊型非平面齿PDC钻头的研制与现场试验[J]. 石油钻探技术,2020,48(2):49–55. doi: 10.11911/syztjs.2020035

    PENG Qi, ZHOU Yingcao, ZHOU Bo, et al. Development and field test of a non-planar cutter PDC bit with convex ridges[J]. Petroleum Drilling Techniques, 2020, 48(2): 49–55. doi: 10.11911/syztjs.2020035

    [8] 谢晗,况雨春,秦超. 非平面PDC切削齿破岩有限元仿真及试验[J]. 石油钻探技术,2019,47(5):69–73. doi: 10.11911/syztjs.2019043

    XIE Han, KUANG Yuchun, QIN Chao. The finite element simulation and test of rock breaking by non-planar PDC cutting cutter[J]. Petroleum Drilling Techniques, 2019, 47(5): 69–73. doi: 10.11911/syztjs.2019043

    [9] 刘建华,令文学,王恒. 非平面三棱形PDC齿破岩机理研究与现场试验[J]. 石油钻探技术,2021,49(5):46–50. doi: 10.11911/syztjs.2021040

    LIU Jianhua, LING Wenxue, WANG Heng. Study on rock breaking mechanism and field test of triangular prismatic PDC cutters[J]. Petroleum Drilling Techniques, 2021, 49(5): 46–50. doi: 10.11911/syztjs.2021040

    [10] 王滨,李军,邹德永,等. 适合强研磨性硬地层PDC–金刚石孕镶块混合钻头设计与应用[J]. 特种油气藏,2018,25(1):169–174. doi: 10.3969/j.issn.1006-6535.2018.01.035

    WANG Bin, LI Jun, ZOU Deyong, et al. Design and application of a PDC hybrid drill bit with impregnated diamond insert for the hard formation with strong abrasivity[J]. Special Oil & Gas Reservoirs, 2018, 25(1): 169–174. doi: 10.3969/j.issn.1006-6535.2018.01.035

    [11] 李琴,傅文韬,黄志强,等. 硬地层中新型PDC齿破岩机理及试验研究[J]. 工程设计学报,2019,26(6):635–644. doi: 10.3785/j.issn.1006-754X.2019.00.015

    LI Qin, FU Wentao, HUANG Zhiqiang, et al. Rock breaking mechanism and experimental study of new PDC tooth in hard formation[J]. Journal of Engineering Design, 2019, 26(6): 635–644. doi: 10.3785/j.issn.1006-754X.2019.00.015

    [12] 吴泽兵,席凯凯,王杰,等. 仿生耦合PDC单齿的设计及其仿真[J]. 石油机械,2021,49(8):39–45.

    WU Zebing, XI Kaikai, WANG Jie, et al. Design and simulation of bionic coupling PDC cutter[J]. China Petroleum Machinery, 2021, 49(8): 39–45.

    [13] 孙荣军,谷拴成,石智军,等. 硬岩钻进用仿生PDC切削齿优化与破岩机理研究[J]. 煤炭科学技术,2018,46(5):143–148.

    SUN Rongjun, GU Shuancheng, SHI Zhijun, et al. Study on optimized bionic PDC cutter applied to hard rock drilling and rock cutting mechanism[J]. Coal Science and Technology, 2018, 46(5): 143–148.

    [14] 刘永升. 仿生PDC切削齿结构设计与破岩机理研究[D]. 成都: 西南石油大学, 2015.

    LIU Yongsheng. Structure design and rock breaking mechanism of bionic PDC cutting teeth[D]. Chengdu: Southwest Petroleum University, 2015.

    [15] 孙荣军. 煤矿用PDC钻头耦合仿生设计及提速增效破岩机理研究[D]. 西安: 西安科技大学, 2018.

    SUN Rongjun. The design of coupling bionic on PDC bits used in coal mines and research on its rock breaking mechanism through improvement of penetration and efficiency[D]. Xi’an: Xi’an University of Science and Technology, 2018.

    [16] 荣宝军. 耐磨仿生几何结构表面及其土壤磨料磨损[D]. 长春: 吉林大学, 2008.

    RONG Baojun. Biomimetic geometrical structure surfaces with anti-abrasion function and their abrasive wear against soil[D]. Changchun: Jilin University, 2008.

    [17]

    WANG Chuanliu. Bionic design and test of polycrystalline diamond compact bit for hard rock drilling in coal mine[J]. Advances in Mechanical Engineering, 2020, 12(5): 1–6.

    [18] 徐根,陈枫,徐国平,等. 不同界面形态聚晶金刚石复合片热残余应力分析[J]. 超硬材料工程,2007,19(4):10–15. doi: 10.3969/j.issn.1673-1433.2007.04.002

    XU Gen, CHEN Feng, XU Guoping, et al. Residual stresses analysis of polycrystalline diamond compacts with different interface[J]. Superhard Material Engineering, 2007, 19(4): 10–15. doi: 10.3969/j.issn.1673-1433.2007.04.002

    [19] 梁正召. 三维条件下的岩石破裂过程分析及其数值试验方法研究[D]. 沈阳: 东北大学, 2005.

    LIANG Zhengzhao. Three-dimensional failure process analysis of rock and associated numerical tests[D]. Shenyang: Northeastern University, 2005.

    [20] 杨同,徐川,王宝学,等. 岩土三轴试验中的粘聚力与内摩擦角[J]. 中国矿业,2007,16(12):104–107. doi: 10.3969/j.issn.1004-4051.2007.12.032

    YANG Tong, XU Chuan, WANG Baoxue, et al. The cohesive strength and the friction angle in rock-soil triaxial rests[J]. China Mining Magazine, 2007, 16(12): 104–107. doi: 10.3969/j.issn.1004-4051.2007.12.032

    [21] 卢允德,葛修润,蒋宇,等. 大理岩常规三轴压缩全过程试验和本构方程的研究[J]. 岩石力学与工程学报,2004,23(15):2489–2493. doi: 10.3321/j.issn:1000-6915.2004.15.001

    LU Yunde, GE Xiurun, JIANG Yu, et al. Study on conventional triaxial compression test of complete process for marble and its constitutive equation[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(15): 2489–2493. doi: 10.3321/j.issn:1000-6915.2004.15.001

    [22] 赵金昌,万志军,李义,等. 高温高压条件下花岗岩切削破碎试验研究[J]. 岩石力学与工程学报,2009,28(7):1432–1438. doi: 10.3321/j.issn:1000-6915.2009.07.017

    ZHAO Jinchang, WAN Zhijun, LI Yi, et al. Research on granite cutting and breaking test under conditions of high temperature and high pressure[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(7): 1432–1438. doi: 10.3321/j.issn:1000-6915.2009.07.017

    [23] 吴泽兵,吕澜涛,王勇勇,等. 牙轮—PDC混合钻头的破岩特性及温度场变化[J]. 天然气工业,2020,40(3):99–106. doi: 10.3787/j.issn.1000-0976.2020.03.012

    WU Zebing, LYU Lantao, WANG Yongyong, et al. Rock-breaking characteristics and temperature field change of cone-PDC hybrid bits[J]. Natural Gas Industry, 2020, 40(3): 99–106. doi: 10.3787/j.issn.1000-0976.2020.03.012

  • 期刊类型引用(1)

    1. 刘献博,薛亮,刘敏,王智明,张峥,邵天宇. 连续波钻井液脉冲发生器压力波波形优化研究. 石油机械. 2020(12): 44-51 . 百度学术

    其他类型引用(5)

图(14)  /  表(1)
计量
  • 文章访问数:  428
  • HTML全文浏览量:  209
  • PDF下载量:  90
  • 被引次数: 6
出版历程
  • 收稿日期:  2021-06-23
  • 修回日期:  2021-11-22
  • 网络出版日期:  2021-11-04
  • 刊出日期:  2022-04-05

目录

    /

    返回文章
    返回