Study on the Influence of Salt Rock Creep on the Integrity of Cement Sheath Gas Seals
-
摘要: 盐岩具有可溶性和可塑性,钻井及固井过程中易发生塑性变形或蠕动流动,导致井眼呈不规则形状,使套管发生变形或被挤毁,影响盐岩层段井筒气密性,从而影响油(气)井的正常生产及安全。为了给盐岩层段的井筒气密性评价提供理论依据,基于岩石物理试验及三维有限元法,分析了盐岩地层对固井一界面、二界面气密性的影响。分析得知:固井一界面对气体的密封能力强于水泥石本身的气密性,盐岩蠕变可增强固井二界面的气密封能力;盐岩层气体密封能力主要取决于固井二界面的密封能力和水泥石自身密封能力;盐岩层气体密封能力与界面接触压力呈复杂正相关性。基于分析结果,建立了固井二界面气体密封压力定量评价模型。固井二界面气体密封压力定量评价模型可评价目标区盐岩地层气密性,对其他地区类似地层固井施工也有借鉴作用。Abstract: Salt rocks are prone to plastic deformation or creeping flow during drilling and cementing due to their solubility and plasticity. This may result in irregular wellbores and deformed or even collapsed casings, which influences air tightness of wellbore in salt rock interval and thereby threatening the normal production and safety of oil (gas) wells. This study aimed to provide a theoretical basis for air tightness evaluations of wellbores in salt rock intervals. For this purpose, the influences of salt rock intervals on the air tightness of the first and the second interfaces in cementing were analyzed by means of petrophysical experiments and three dimensional (3D) finite element simulations. The following results are obtained: The first interface is superior to the cement stone itself in gas sealing ability, and the ability of the second interface can be enhanced from salt rock creep. The gas sealing ability of salt rock intervals is mainly depends on the sealing ability of the second interface and cement stone itself. The gas sealing ability of salt rock intervals has a complex positive correlation with interface contact pressure. A model for quantitative evaluation of gas seal pressure at the second interface in cementing was built based on the analysis results. With this model, the air tightness of salt rock intervals in target areas can be evaluated, and it can provide reference for the cementing in similar intervals in other areas.
-
Keywords:
- salt rock /
- creep /
- air tightness of wellbore /
- judgment criteria /
- contact pressure
-
-
表 1 固井一界面气体密封能力
Table 1 Gas sealing ability of the first interface of cementing
模拟套管长度/mm 密封压力/MPa 接触压力/MPa 18.9 7.20 1.35 28.7 6.00 1.38 39.0 9.40 1.98 47.9 9.80 1.98 58.2 10.30 2.02 69.5 10.80 1.98 78.4 10.00 2.01 表 2 固井二界面气体密封能力
Table 2 Gas sealing ability of the second interface in cementing
试验方案 岩样 围压/MPa 突破压力/MPa 接触压力/MPa 方案1 1 2.0 0.1 2 2.0 1.0 0.9 3 6.0 4.0 1.9 方案2 1 4.0 0.6 0.5 2 6.0 2.7 2.6 3 10.0 5.6 方案3 4 6.0 7.8 5.7 5 8.0 1.0 7.6 表 3 蠕变试验参数取值
Table 3 Parameters of creep experiment
试验方法 参考取值 A n m 单轴蠕变 4.14×10–6 2.000 –0.94 围压蠕变 3.74×10–6 1.876 0 表 4 WX4-3井盐岩层段固井二界面密封压力
Table 4 Sealing pressure of the second interface in cementing for the salt rock interval of Well WX4-3
地层深度/m 候凝不同时间后的固井二界面密封压力/MPa 24 h 48 h 72 h 600 h 1000 h 2 300 39.03 42.95 44.72 50.03 50.70 2 350 40.04 44.00 45.78 51.14 51.81 2 400 40.97 45.00 46.82 52.28 52.96 2 450 71.20 67.08 65.23 59.71 59.02 2 500 43.01 47.20 49.06 54.55 55.22 2 550 43.75 48.06 49.98 55.64 56.32 2 600 44.62 49.07 51.04 56.76 57.45 2 650 45.65 50.12 52.10 57.87 58.56 2 700 46.81 51.27 53.24 59.00 59.69 2 750 47.66 52.20 54.22 60.10 60.81 表 5 WX7-7井盐岩层段固井质量评价结果
Table 5 Cementing quality evaluation results of salt rock interval of Well WX7-7
测井次序 界面 固井质量评价结果占比,% 好 中 差 第一次
(固井3 d)一界面 0.3 7.1 92.6 二界面 0.7 99.3 第二次
(固井32 d)一界面 8.2 15.9 75.9 二界面 1.7 11.9 86.4 第三次
(固井47 d)一界面 21.4 21.4 57.2 二界面 10.8 17.0 72.2 -
[1] 王志战. 枯竭砂岩气藏型储气库录井关键技术研究: 以文23储气库为例[J]. 石油钻探技术,2019,47(3):156–162. doi: 10.11911/syztjs.2019059 WANG Zhizhan. Key mud logging technologies for depleted sandstone gas storage: case study of the Wen 23 Gas Storage[J]. Petroleum Drilling Techniques, 2019, 47(3): 156–162. doi: 10.11911/syztjs.2019059
[2] 梁卫国,徐素国,刘江,等. 金坛储气库岩盐蠕变特性及其实用本构研究[J]. 辽宁工程技术大学学报(自然科学版),2007,26(3):354–356. doi: 10.3969/j.issn.1008-0562.2007.03.011 LIANG Weiguo, XU Suguo, LIU Jiang, et al. Research on creep property and practical constitutive equation of rock salt in Jintan gas storage of China[J]. Journal of Liaoning Technical University(Natural Science Edition), 2007, 26(3): 354–356. doi: 10.3969/j.issn.1008-0562.2007.03.011
[3] 赵金洲. 文23地下储气库关键工程技术[J]. 石油钻探技术,2019,47(3):18–24. doi: 10.11911/syztjs.2019063 ZHAO Jinzhou. The key engineering techniques of the Wen 23 Underground Gas Storage[J]. Petroleum Drilling Techniques, 2019, 47(3): 18–24. doi: 10.11911/syztjs.2019063
[4] 袁光杰,夏焱,金根泰,等. 国内外地下储库现状及工程技术发展趋势[J]. 石油钻探技术,2017,45(4):8–14. YUAN Guangjie, XIA Yan, JIN Gentai, et al. Present state of underground storage and development trends in engineering technologies at home and abroad[J]. Petroleum Drilling Techniques, 2017, 45(4): 8–14.
[5] 马跃,陈勉,金衍,等. 相对湿度对盐膏岩蠕变规律影响的机理研究[J]. 石油钻探技术,2013,41(4):19–22. doi: 10.3969/j.issn.1001-0890.2013.04.005 MA Yue, CHEN Mian, JIN Yan, et al. Mechanism of effect of relative humidity on creep behavior of gypsum rock[J]. Petroleum Drilling Techniques, 2013, 41(4): 19–22. doi: 10.3969/j.issn.1001-0890.2013.04.005
[6] GE Weifeng, CHEN Mian, JIN Yan, et al. Analysis of the external pressure on casings induced by salt-gypsum creep in build-up sections for horizontal wells[J]. Rock Mechanics and Rock Engineering, 2011, 44(6): 711. doi: 10.1007/s00603-011-0162-5
[7] MOTA B, MATSCHEI T, SCRIVENER K. The influence of sodium salts and gypsum on alite hydration[J]. Cement and Concrete Research, 2015, 75: 53–65. doi: 10.1016/j.cemconres.2015.04.015
[8] SCHUG B, MANDEL K, SCHOTTNER G, et al. A mechanism to explain the creep behavior of gypsum plaster[J]. Cement and Concrete Research, 2017, 98: 122–129. doi: 10.1016/j.cemconres.2017.04.012
[9] 李正杰,武志德,王汉鹏,等. 一种层状盐岩相似材料的蠕变特性[J]. 油气储运,2017,36(7):789–794. LI Zhengjie, WU Zhide, WANG Hanpeng, et al. Creep characteristic of a material similar with layered salt rock[J]. Oil & Storage and Transportation, 2017, 36(7): 789–794.
[10] GHOLAMI R, RABIEI M, AADNOY B, et al. A methodology for wellbore stability analysis of drilling into presalt formations: a case study from southern Iran[J]. Journal of Petroleum Science and Engineering, 2018, 167: 249–261. doi: 10.1016/j.petrol.2017.11.023
[11] 张强星, 刘建锋, 廖益林, 等. 层状盐穴储库中三种典型岩石蠕变特征[J]. 科学技术与工程, 2019, 19(28): 297-303. ZHANG Qiangxing, LIU Jianfeng, LIAO Yilin, et al. Creep characteristics of three typical rock in layered salt cavern reservoir[J]. Science Technology and Engineering, 2019, 19(28):297-303.
[12] 崔峰, 马成卫. 基于蠕变全过程的广义凯尔文体力学损伤模型改进与验证[J]. 西安科技大学学报, 2019, 40(1): 58 -63. CUI Feng, MA Chengwei. Improvement and verification of generalized Kelvin damage model based on the whole creep process[J]. Journal of Xi’an University of Science and Technology, 2019, 40(1):58-63.
[13] 徐帅, 张青庆, 李小明, 等. 金坛盐穴储气库注采运行参数优化设计研究[J]. 石油钻采工艺, 2020, 42(4): 490-496. XU Shuai, ZHANG Qingqing, LI Xiaoming, et al. Optimization design of injection/production parameters of Jintan salt-cavern gas storage[J]. Oil Drilling & Production Technology, 2020, 42(4): 490-496.
[14] WANG Tongtao, YANG Chunhe, YAN Xiangzhen, et al. Allowable pillar width for bedded rock salt caverns gas storage[J]. Journal of Petroleum Science and Engineering, 2015, 127: 433–444. doi: 10.1016/j.petrol.2015.01.040
[15] 梁卫国,徐素国,赵阳升,等. 盐岩蠕变特性的试验研究[J]. 岩石力学与工程学报,2006,25(7):1386–1390. doi: 10.3321/j.issn:1000-6915.2006.07.013 LIANG Weiguo, XU Suguo, ZHAO Yangsheng, et al. Experimental study on creep property of rock salt[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(7): 1386–1390. doi: 10.3321/j.issn:1000-6915.2006.07.013
[16] 陈锋,杨春和,白世伟. 盐岩储气库蠕变损伤分析[J]. 岩土力学,2006,27(6):945–948. doi: 10.3969/j.issn.1000-7598.2006.06.019 CHEN Feng, YANG Chunhe, BAI Shiwei. Investigation on creep damage of natural gas storage in salt rock layer[J]. Rock and Soil Mechanics, 2006, 27(6): 945–948. doi: 10.3969/j.issn.1000-7598.2006.06.019
[17] 刘伟,李银平,霍永胜,等. 盐岩地下储库围岩界面变形与破损特性分析[J]. 岩土力学,2013,35(5):526–531. LIU Wei, LI Yinping, HUO Yongsheng, et al. Analysisof deformation and fracture characteristics of wallrock interface of underground storage caverns in saltrock formation[J]. Rock and Soil Mechanics, 2013, 35(5): 526–531.
[18] 敖海兵,陈加松,胡志鹏,等. 盐穴储气库运行损伤评价体系[J]. 油气储运,2017,36(8):910–916. AO Haibing, CHEN Jiasong, HU Zhipeng, et al. Study on thedamage assessment system of salt-cavern gas storage[J]. Oil & Gas Storage and Transportation, 2017, 36(8): 910–916.
[19] 冯福平,赵恩远,艾池,等. 蠕变地层水泥环特性对套管应力的影响[J]. 石油钻采工艺,2012,34(4):36–39. doi: 10.3969/j.issn.1000-7393.2012.04.010 FENG Fuping, ZHAO Enyuan, AI Chi, et al. Effect of cement sheath properties on casing stress in creep formation[J]. Oil Drilling & Production Technology, 2012, 34(4): 36–39. doi: 10.3969/j.issn.1000-7393.2012.04.010
[20] 胡其志,王芝超,丁志刚. 基于分数阶导数的岩石蠕变本构模型研究[J]. 河南理工大学学报(自然科学版),2021,40(6):163–168. HU Qizhi, WANG Zhichao, DING Zhigang. Study on the rock creep constitutive model based on fractional derivative[J]. Journal of Henan Polytechnic University(Natural Science), 2021, 40(6): 163–168.
[21] 苏彦,张向东,周林林. 岩石分数阶蠕变损伤本构模型研究[J]. 河北工程大学学报(自然科学版),2020,37(1):19–23. SU Yan, ZHANG Xiangdong, ZHOU Linlin. Study on constitutive model of fractional creep damage of rock[J]. Journal of Hebei University of Engineering (Natural Science Edition), 2020, 37(1): 19–23.
-
期刊类型引用(11)
1. 翁定为,孙强,梁宏波,雷群,管保山,慕立俊,刘汉斌,张绍林,柴麟,黄瑞. 低渗透老油田柔性侧钻水平井挖潜技术. 石油勘探与开发. 2025(01): 194-203 . 百度学术
2. 卢聪,李秋月,郭建春. 分布式光纤传感技术在水力压裂中的研究进展. 油气藏评价与开发. 2024(04): 618-628 . 百度学术
3. 叶志权,肖雷,王丽峰,薛浩楠,王晗. 小井眼连续油管多簇射孔填砂分段压裂技术——以百口泉油田百1断块X井为例. 油气井测试. 2023(01): 33-37 . 百度学术
4. 李娜. 水平井分段多簇压裂技术影响因素. 化学工程与装备. 2023(07): 97-98 . 百度学术
5. 柳军,杜智刚,牟少敏,王睦围,张敏,殷腾,俞海,曹大勇. 连续油管分簇射孔管柱通过能力分析模型及影响因素研究. 特种油气藏. 2022(05): 139-148 . 百度学术
6. 张文康. 长庆油田陇东地区页岩油水平井细分切割压裂技术. 石化技术. 2022(12): 139-141 . 百度学术
7. 邹立萍,邹昌柏. 关于水平井压裂工艺技术现状及展望. 当代化工研究. 2021(10): 7-8 . 百度学术
8. 苗娟,黄兵,谢力,汤明. 高钢级套管段铣工具优化及性能评价. 特种油气藏. 2021(02): 163-170 . 百度学术
9. 李杉杉,孙虎,张冕,池晓明,刘欢. 长庆油田陇东地区页岩油水平井细分切割压裂技术. 石油钻探技术. 2021(04): 92-98 . 本站查看
10. 谢慧华,马青印,辛红伟,田相元,孔春岩,贺亚杰. 文留油田盐间油藏深部双层套管开窗侧钻技术. 断块油气田. 2021(05): 706-710 . 百度学术
11. 李海涛,罗红文,向雨行,安树杰,李颖,蒋贝贝,谢斌,辛野. DTS/DAS技术在水平井压裂监测中的应用现状与展望. 新疆石油天然气. 2021(04): 62-73 . 百度学术
其他类型引用(6)