Study on the Influence of Salt Rock Creep on the Integrity of Cement Sheath Gas Seals
-
摘要: 盐岩具有可溶性和可塑性,钻井及固井过程中易发生塑性变形或蠕动流动,导致井眼呈不规则形状,使套管发生变形或被挤毁,影响盐岩层段井筒气密性,从而影响油(气)井的正常生产及安全。为了给盐岩层段的井筒气密性评价提供理论依据,基于岩石物理试验及三维有限元法,分析了盐岩地层对固井一界面、二界面气密性的影响。分析得知:固井一界面对气体的密封能力强于水泥石本身的气密性,盐岩蠕变可增强固井二界面的气密封能力;盐岩层气体密封能力主要取决于固井二界面的密封能力和水泥石自身密封能力;盐岩层气体密封能力与界面接触压力呈复杂正相关性。基于分析结果,建立了固井二界面气体密封压力定量评价模型。固井二界面气体密封压力定量评价模型可评价目标区盐岩地层气密性,对其他地区类似地层固井施工也有借鉴作用。Abstract: Salt rocks are prone to plastic deformation or creeping flow during drilling and cementing due to their solubility and plasticity. This may result in irregular wellbores and deformed or even collapsed casings, which influences air tightness of wellbore in salt rock interval and thereby threatening the normal production and safety of oil (gas) wells. This study aimed to provide a theoretical basis for air tightness evaluations of wellbores in salt rock intervals. For this purpose, the influences of salt rock intervals on the air tightness of the first and the second interfaces in cementing were analyzed by means of petrophysical experiments and three dimensional (3D) finite element simulations. The following results are obtained: The first interface is superior to the cement stone itself in gas sealing ability, and the ability of the second interface can be enhanced from salt rock creep. The gas sealing ability of salt rock intervals is mainly depends on the sealing ability of the second interface and cement stone itself. The gas sealing ability of salt rock intervals has a complex positive correlation with interface contact pressure. A model for quantitative evaluation of gas seal pressure at the second interface in cementing was built based on the analysis results. With this model, the air tightness of salt rock intervals in target areas can be evaluated, and it can provide reference for the cementing in similar intervals in other areas.
-
Keywords:
- salt rock /
- creep /
- air tightness of wellbore /
- judgment criteria /
- contact pressure
-
稠油的黏度大、流动性差,且其黏度对温度特别敏感,温度每升高8~9 ℃,黏度可降低50%,因而提高温度是改善稠油流动性的有效措施[1],因此,普遍采用热采工艺开发稠油。目前,稠油热采工艺主要有电加热、热流体循环、蒸汽吞吐和蒸汽驱等[2–6],其中,电加热工艺是稠油开发的主要选择[7]。现场常用电加热工艺主要有空心油杆电加热、伴热带电加热和电磁短节加热等,按照加热介质和加热功率是否连续,可将电加热工艺分为连续电加热和电磁短节加热两类。由于稠油黏温特性、油井井身结构的不同,电加热工艺选择、加热功率和加热时长等作业参数设计,均需要精确计算井筒温度场。因此,深入研究电加热工艺的井筒与储层间的换热机理,建立换热模型和温度场计算方法,进而获取不同加热工艺和作业参数下井筒温度场的分布特征,对电加热稠油热采工艺选择、作业参数设计和提高稠油开采效果具有重要意义。
国内外对电加热稠油热采换热问题的研究主要集中于连续电加热工艺,而对电磁短节加热工艺井筒温度场的研究较少。此外,温度不仅对稠油黏度影响较大,还对其比热容和热导率2个热物性参数有较大影响,而现有模型未考虑温度对稠油热物性的影响[8–9]。为此,笔者考虑温度场工程计算精度需求和数值计算方法的可靠性,耦合半瞬态换热分析方法[10–14]和基于流型的气液两相流机理模型[15–17],建立了考虑温度对稠油热物性影响的电加热稠油热采流动与换热控制方程,形成了连续电加热和电磁短节加热井筒温度场的数值计算方法,并用计算实例分析了2种电加热工艺的井筒温度场剖面特征、加热功率对2种工艺井口温度及平均温度的影响。
1. 数学模型的建立
1.1 基本假设
基于电加热稠油热采工艺,做以下基本假设:1)油管内流体为一维稳态流动和传热,流速、压力、温度只随轴向位置变化而变化;2)地层内仅发生径向换热,相同深度地层为均质地层;3)产出液可压缩,热物性随温度变化而变化;4)忽略生产期间的轴向热传导换热。
1.2 控制方程
由于产出液可压缩,其物性参数受温度场和压力场共同影响,故需耦合求解质量守恒方程、动量守恒方程和能量守恒方程。以井筒中心线为Z轴,井口指向井底的方向为正,建立一维坐标系,Z轴原点为井深参考点,井斜角为θ。
1.2.1 质量守恒方程
油管内流体流动方向与Z轴正方向相反,两相流质量流量不随轴向位置变化,质量守恒方程为:
∂(ρmvmA)∂Z=0 (1) 式中:
ρm 油管内为产出液平均密度,kg/m3;vm 为产出液平均流速,m/s;A 为油管横截面积,m2。1.2.2 动量守恒方程
油管内流体动量守恒方程为:
−∂(ρmv2m)∂Z=∂p∂Z−ρmgcosθ−2ρmfmv2mdti (2) 式中:p为产出液压力,Pa;θ为井斜角,(°);fm为范宁摩阻系数;dti为油管内径,m。
1.2.3 能量守恒方程
微元控制体发生的能量传递过程有:Z方向对流换热,即单位时间内流入和流出控制体的能量(包括动能、势能和焓);产出液与地层的换热量以及电加热的生热量。依据能量守恒原理,得电加热能量守恒方程为:
G∂∂Z(−gZcosθ+v2m2+Hm)+Tf−TmRf+q=0 (3) 式中:G为油管内产出液质量流量,kg/s;Hm为油管内产出液比焓,J/kg;Tf为地层温度,K;Tm为油管内产出液温度,K;Rf为产出液到地层总热阻,K/(W·m);q为油管内单位长度的生热量,W/m。
1.2.4 辅助方程
1)稠油黏温关系方程。由于在一定温度下稠油密度变化较小,近似地认为稠油的动力黏度与温度的关系在ASTM坐标图上也呈直线关系,其精度能满足热采工程计算的要求:
lglgμoD=A−Blg(Tm−273.15) (4) 式中:μoD为稠油脱气黏度,Pa·s;A、B为常数。
2)稠油比热容方程。稠油比热容主要受温度和密度的影响,采用Gambill关系式计算稠油比热容:
co=1√ρ15/1000[1.6848+0.00339(T−273.15)] (5) 式中:co为稠油比热容,kJ/(kg·K);ρ15为15 ℃时稠油密度,kg/m3;T为稠油温度,K。
3)稠油热导率方程。稠油的热导率随温度升高而减小,且受稠油密度影响,计算公式为:
ko=(134.2575−0.06318T)/ρ15 (6) 式中:ko为稠油热导率,W/(m·K)。
1.3 总热阻计算
油管内产出液与地层间的换热剖面如图1所示,其换热主要为油管壁面处强迫对流换热,油管壁、水泥环、套管等的传导换热,油套环空内自然对流换热和辐射换热。稳态换热工程意义为轴向位置相同介质(产液、油管壁面、油套环空、套管、水泥环及地层)中发生的径向换热热流量相等,即产出液与井壁的热流量等于井壁与地层的换热量,据此可得到产出液与地层的总换热热阻。
产出液到井壁界面(rw)的热阻Rw为:
Rw=1ΔZ[12πrtihm+ln(rto/rti)2πkt+ln(rci/rto)2πka+ln(rco/rci)2πkc+ln(rw/rco)2πks] (7) 式中:Rw为产出液到井壁的热阻,K/(W·m);kt,ka,kc和ks分别为油管、油套环空、套管、套管与地层环空的热导率,W/(m·K);hm为产出液与管壁间的对流换热系数,W/(m2·K);rti是油管内半径,m;rto是油管外半径,m;rci是套管内半径,m; rco是套管外半径,m。
由于井筒与地层间的换热量等于井筒内产出液与井壁间的换热量,则得:
Tw−TmRw=2πkf(Tf−Tw)ΔZf(t) (8) 式中:Tw为井壁温度,K;f(t)为Ramey时间函数;kf为地层热导率,W/(m·K)。
消去井壁温度,得到用地层温度和产出液温度表示的热流量计算公式:
q=Tf−TmRw+f(t)2πkfΔZ (9) 因此,油管内产出液与地层间的总换热热阻计算公式为:
Rf=Rw+f(t)2πkfΔZ (10) 2. 井筒温度场数值计算方法
稠油自井底向井口流动过程中,温度、压力随井深变化,且温度和压力与稠油的密度、黏度、比热容、热导率相互影响,因此,求解电加热稠油热采控制方程时,需要将全井段按照井深进行网格划分,应用离散格式控制方程,耦合求解每个网格的温度、压力、热物性、截面含气率等参数。
2.1 网格划分
连续电加热和电磁短节加热2种稠油热采工艺的热源布置方式不同,连续电加热工艺是由空心油杆内加热电缆或油杆旁边的加热电缆沿井筒轴线方向连续提供热量,故泵挂深度以下井段和油杆段均可按照自定义轴向间距ΔZ均匀划分网格,如图2(a)所示。电磁短节加热工艺是由电缆供电,主要热量由电磁加热短节分散提供,同时,电缆也会发热而成为连续低功率热源,网格划分时除按照轴向步长均匀划分网格外,还需在电磁加热短节处增加相应长度的网格,如图2(b)所示。
此外,为避免压力计算溢出,采用交错网格方式将温度节点布置在网格控制体中心,压力和速度节点布置在网格控制体上下2个边界处。
2.2 离散格式温度场控制方程
由于能量守恒方程中既有温度项又有焓项,不利于温度场求解,因此应用焓的温压依赖关系对能量守恒方程进行变换,得到用温度表示的能量守恒方程。
真实气体的焓热力学微分关系式为:
dHdZ=cpdTdZ+HpdpdZ (11) 式中:cp为定压比热容,cp =(dH/dT)p;Hp为焓变,Hp= (dH/dp)T;cp和Hp可应用真实气体状态方程计算。
将式(11)代入式(3),化简可得用温度表示的能量守恒方程:
−GcpdTmdZ+Tf−TmRfdZ−Ggcosθ+GddZ(v2m2)+GHpdpdZ+q=0 (12) 对于节点i而言,已知控制体入口温度Ti+1和对应垂深处地层原始温度Tf,i,则节点i的温度Ti计算公式为:
Ti=GcpmTi+1+Tf,i/Rf,i−GgcosθΔziGcpm+1/Rf,i+G(v2m,i+1/22−v2m,i−1/22)+GHp(pm,i+1/2−pm,i−1/2)+˙qm,iΔziGcpm+1/Rf,i (13) 2.3 电加热温压场耦合计算方法
电加热温压场耦合数值计算基本步骤为:
1)依据井身结构、油管串及电加热工艺进行网格划分;
2)确定网格中心对应的地层原始温度剖面;
3)初始化网格节点温度、压力和产出液密度与热物性;
4)依据地层水静液柱压力设置泵挂处的压力;
5)自下而上采用试算法迭代求解质量守恒方程,判别气液两相流流型,求解动量守恒方程和能量守恒方程,计算每个网格内中心节点温度和下游边界处的压力,直至井口;
6)比较计算的井口压力与设定井口回压,若满足收敛条件,计算结束,输出计算结果;否则,调整泵挂处的压力,重复步骤5)和6)。
3. 应用实例
大港油田X井为生产井,井身结构见表1,泵挂深度为1 300.00 m,油管外径73.0 mm,日产油量5.37 m3,日产气量53.00 m3,日产水量11.40 m3,温度50 ℃时原油黏度911 mPa·s。该井采用连续电加热工艺,加热功率40 kW,加热深度1 300 m,连续电加热7 d后的平均井口温度为59.60 ℃,应用上述井筒温度场计算模型计算的井口温度为61.45 ℃,较实测值略高,但相对误差为3.10%,满足工程精度要求,表明建立的井筒温度场计算模型具有较好的可靠性。
表 1 大港油田X井实钻井身结构Table 1. Actual casing program of Well X in Dagang Oilfield套管 外径/mm 井眼直径/mm 套管下深/m 水泥返高/m 表层套管 244.50 311.1 290.00 地面 生产套管 139.70 215.9 1 388.00 865.00 3.1 井筒温度场剖面特征
应用建立的电加热井筒温度场数值计算方法,计算了加热功率分别为20,40,60,80和100 kW时的连续电加热和电磁短节加热(电磁短节长度为5 m,分别布置在井深400.00,600.00,800.00,1 000.00和1 200.00 m处)2种加热工艺的温度场剖面特征,分别见图3和图4。
由图3和图4可以看出,2种电加热工艺的井筒温度场剖面具有以下共同特征:1)随着加热功率增加,温度场剖面逐渐向右偏移,产出液温度升高;2)下部井段温度梯度较高,上部井段温度梯度较低;3)随加热功率增加,产出液温度最高点对应的井深逐渐上移。2种加热工艺的井筒温度场剖面特征的主要差异为:1)连续电加热工艺的井筒温度场剖面平滑连续,而电磁短节加热工艺的井筒温度场剖面呈锯齿形,电磁短节部位产出液温度明显升高,其上部产出液的温度则快速下降;2)连续电加热工艺的井筒温度场剖面均方差小于电磁短节加热工艺(见表2),表明连续电加热工艺的温度场剖面更均匀。
表 2 连续电加热和电磁短节加热工艺的井筒温度场剖面均方差比较Table 2. Comparison of the mean square errors of wellbore temperature field profiles formed by continuous electric heating and electromagnetic nipple heating processes加热方法 不同加热功率的井筒温度场剖面均方差 20 kW 40 kW 60 kW 80 kW 100 kW 连续电加热 11.63 8.40 5.31 2.97 3.82 电磁短节加热 14.40 10.96 7.40 4.40 4.01 3.2 加热效果
连续电加热和电磁短节加热工艺的井口温度和平均温度计算结果如图5所示。
由图5可以看出,连续电加热和电磁短节加热的井口温度和平均温度均随着加热功率增大呈线性升高,连续电加热工艺的井口温度略高于电磁短节加热工艺,而电磁短节加热工艺的平均温度略高于连续电加热工艺。
计算结果表明,电磁短节加热功率为100 kW时,X井多个井深处产出液的温度超过100.00 ℃,最高温度为111.83 ℃,而采用连续电加热工艺时产出液的最高温度为96.68 ℃。可见,连续电加热和电磁短节加热稠油热采过程中,井下产出液的温度会有较大的波动,从而会对油管、井下工具和仪器的安全使用造成不利影响。
4. 结论与建议
1)考虑温度对稠油热物性影响,建立了连续电加热和电磁短节加热工艺的井筒温度场数值计算方法,计算实例表明,模型计算结果与实测值相对误差为3.10%,满足工程设计精度要求。
2)连续电加热和电磁短节加热工艺的井筒温度场剖面均表现出下部井段温度梯度较高、而上部井段温度梯度较低的特征,但连续电加热的温度场剖面平滑连续,电磁短节加热工艺的温度场剖面呈锯齿形,且温度波动较大。
3)加热功率相同条件下,连续电加热工艺的井口温度略高于电磁短节加热工艺,而连续电加热工艺的平均温度低于电磁短节加热工艺。
4)稠油黏温关系对稠油热采井筒温度场预测与作业参数确定影响较大,建议在进行稠油热采温度场分析前进行5个温度点以上的黏度测试,以提高分析精度。
-
表 1 固井一界面气体密封能力
Table 1 Gas sealing ability of the first interface of cementing
模拟套管长度/mm 密封压力/MPa 接触压力/MPa 18.9 7.20 1.35 28.7 6.00 1.38 39.0 9.40 1.98 47.9 9.80 1.98 58.2 10.30 2.02 69.5 10.80 1.98 78.4 10.00 2.01 表 2 固井二界面气体密封能力
Table 2 Gas sealing ability of the second interface in cementing
试验方案 岩样 围压/MPa 突破压力/MPa 接触压力/MPa 方案1 1 2.0 0.1 2 2.0 1.0 0.9 3 6.0 4.0 1.9 方案2 1 4.0 0.6 0.5 2 6.0 2.7 2.6 3 10.0 5.6 方案3 4 6.0 7.8 5.7 5 8.0 1.0 7.6 表 3 蠕变试验参数取值
Table 3 Parameters of creep experiment
试验方法 参考取值 A n m 单轴蠕变 4.14×10–6 2.000 –0.94 围压蠕变 3.74×10–6 1.876 0 表 4 WX4-3井盐岩层段固井二界面密封压力
Table 4 Sealing pressure of the second interface in cementing for the salt rock interval of Well WX4-3
地层深度/m 候凝不同时间后的固井二界面密封压力/MPa 24 h 48 h 72 h 600 h 1000 h 2 300 39.03 42.95 44.72 50.03 50.70 2 350 40.04 44.00 45.78 51.14 51.81 2 400 40.97 45.00 46.82 52.28 52.96 2 450 71.20 67.08 65.23 59.71 59.02 2 500 43.01 47.20 49.06 54.55 55.22 2 550 43.75 48.06 49.98 55.64 56.32 2 600 44.62 49.07 51.04 56.76 57.45 2 650 45.65 50.12 52.10 57.87 58.56 2 700 46.81 51.27 53.24 59.00 59.69 2 750 47.66 52.20 54.22 60.10 60.81 表 5 WX7-7井盐岩层段固井质量评价结果
Table 5 Cementing quality evaluation results of salt rock interval of Well WX7-7
测井次序 界面 固井质量评价结果占比,% 好 中 差 第一次
(固井3 d)一界面 0.3 7.1 92.6 二界面 0.7 99.3 第二次
(固井32 d)一界面 8.2 15.9 75.9 二界面 1.7 11.9 86.4 第三次
(固井47 d)一界面 21.4 21.4 57.2 二界面 10.8 17.0 72.2 -
[1] 王志战. 枯竭砂岩气藏型储气库录井关键技术研究: 以文23储气库为例[J]. 石油钻探技术,2019,47(3):156–162. doi: 10.11911/syztjs.2019059 WANG Zhizhan. Key mud logging technologies for depleted sandstone gas storage: case study of the Wen 23 Gas Storage[J]. Petroleum Drilling Techniques, 2019, 47(3): 156–162. doi: 10.11911/syztjs.2019059
[2] 梁卫国,徐素国,刘江,等. 金坛储气库岩盐蠕变特性及其实用本构研究[J]. 辽宁工程技术大学学报(自然科学版),2007,26(3):354–356. doi: 10.3969/j.issn.1008-0562.2007.03.011 LIANG Weiguo, XU Suguo, LIU Jiang, et al. Research on creep property and practical constitutive equation of rock salt in Jintan gas storage of China[J]. Journal of Liaoning Technical University(Natural Science Edition), 2007, 26(3): 354–356. doi: 10.3969/j.issn.1008-0562.2007.03.011
[3] 赵金洲. 文23地下储气库关键工程技术[J]. 石油钻探技术,2019,47(3):18–24. doi: 10.11911/syztjs.2019063 ZHAO Jinzhou. The key engineering techniques of the Wen 23 Underground Gas Storage[J]. Petroleum Drilling Techniques, 2019, 47(3): 18–24. doi: 10.11911/syztjs.2019063
[4] 袁光杰,夏焱,金根泰,等. 国内外地下储库现状及工程技术发展趋势[J]. 石油钻探技术,2017,45(4):8–14. YUAN Guangjie, XIA Yan, JIN Gentai, et al. Present state of underground storage and development trends in engineering technologies at home and abroad[J]. Petroleum Drilling Techniques, 2017, 45(4): 8–14.
[5] 马跃,陈勉,金衍,等. 相对湿度对盐膏岩蠕变规律影响的机理研究[J]. 石油钻探技术,2013,41(4):19–22. doi: 10.3969/j.issn.1001-0890.2013.04.005 MA Yue, CHEN Mian, JIN Yan, et al. Mechanism of effect of relative humidity on creep behavior of gypsum rock[J]. Petroleum Drilling Techniques, 2013, 41(4): 19–22. doi: 10.3969/j.issn.1001-0890.2013.04.005
[6] GE Weifeng, CHEN Mian, JIN Yan, et al. Analysis of the external pressure on casings induced by salt-gypsum creep in build-up sections for horizontal wells[J]. Rock Mechanics and Rock Engineering, 2011, 44(6): 711. doi: 10.1007/s00603-011-0162-5
[7] MOTA B, MATSCHEI T, SCRIVENER K. The influence of sodium salts and gypsum on alite hydration[J]. Cement and Concrete Research, 2015, 75: 53–65. doi: 10.1016/j.cemconres.2015.04.015
[8] SCHUG B, MANDEL K, SCHOTTNER G, et al. A mechanism to explain the creep behavior of gypsum plaster[J]. Cement and Concrete Research, 2017, 98: 122–129. doi: 10.1016/j.cemconres.2017.04.012
[9] 李正杰,武志德,王汉鹏,等. 一种层状盐岩相似材料的蠕变特性[J]. 油气储运,2017,36(7):789–794. LI Zhengjie, WU Zhide, WANG Hanpeng, et al. Creep characteristic of a material similar with layered salt rock[J]. Oil & Storage and Transportation, 2017, 36(7): 789–794.
[10] GHOLAMI R, RABIEI M, AADNOY B, et al. A methodology for wellbore stability analysis of drilling into presalt formations: a case study from southern Iran[J]. Journal of Petroleum Science and Engineering, 2018, 167: 249–261. doi: 10.1016/j.petrol.2017.11.023
[11] 张强星, 刘建锋, 廖益林, 等. 层状盐穴储库中三种典型岩石蠕变特征[J]. 科学技术与工程, 2019, 19(28): 297-303. ZHANG Qiangxing, LIU Jianfeng, LIAO Yilin, et al. Creep characteristics of three typical rock in layered salt cavern reservoir[J]. Science Technology and Engineering, 2019, 19(28):297-303.
[12] 崔峰, 马成卫. 基于蠕变全过程的广义凯尔文体力学损伤模型改进与验证[J]. 西安科技大学学报, 2019, 40(1): 58 -63. CUI Feng, MA Chengwei. Improvement and verification of generalized Kelvin damage model based on the whole creep process[J]. Journal of Xi’an University of Science and Technology, 2019, 40(1):58-63.
[13] 徐帅, 张青庆, 李小明, 等. 金坛盐穴储气库注采运行参数优化设计研究[J]. 石油钻采工艺, 2020, 42(4): 490-496. XU Shuai, ZHANG Qingqing, LI Xiaoming, et al. Optimization design of injection/production parameters of Jintan salt-cavern gas storage[J]. Oil Drilling & Production Technology, 2020, 42(4): 490-496.
[14] WANG Tongtao, YANG Chunhe, YAN Xiangzhen, et al. Allowable pillar width for bedded rock salt caverns gas storage[J]. Journal of Petroleum Science and Engineering, 2015, 127: 433–444. doi: 10.1016/j.petrol.2015.01.040
[15] 梁卫国,徐素国,赵阳升,等. 盐岩蠕变特性的试验研究[J]. 岩石力学与工程学报,2006,25(7):1386–1390. doi: 10.3321/j.issn:1000-6915.2006.07.013 LIANG Weiguo, XU Suguo, ZHAO Yangsheng, et al. Experimental study on creep property of rock salt[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(7): 1386–1390. doi: 10.3321/j.issn:1000-6915.2006.07.013
[16] 陈锋,杨春和,白世伟. 盐岩储气库蠕变损伤分析[J]. 岩土力学,2006,27(6):945–948. doi: 10.3969/j.issn.1000-7598.2006.06.019 CHEN Feng, YANG Chunhe, BAI Shiwei. Investigation on creep damage of natural gas storage in salt rock layer[J]. Rock and Soil Mechanics, 2006, 27(6): 945–948. doi: 10.3969/j.issn.1000-7598.2006.06.019
[17] 刘伟,李银平,霍永胜,等. 盐岩地下储库围岩界面变形与破损特性分析[J]. 岩土力学,2013,35(5):526–531. LIU Wei, LI Yinping, HUO Yongsheng, et al. Analysisof deformation and fracture characteristics of wallrock interface of underground storage caverns in saltrock formation[J]. Rock and Soil Mechanics, 2013, 35(5): 526–531.
[18] 敖海兵,陈加松,胡志鹏,等. 盐穴储气库运行损伤评价体系[J]. 油气储运,2017,36(8):910–916. AO Haibing, CHEN Jiasong, HU Zhipeng, et al. Study on thedamage assessment system of salt-cavern gas storage[J]. Oil & Gas Storage and Transportation, 2017, 36(8): 910–916.
[19] 冯福平,赵恩远,艾池,等. 蠕变地层水泥环特性对套管应力的影响[J]. 石油钻采工艺,2012,34(4):36–39. doi: 10.3969/j.issn.1000-7393.2012.04.010 FENG Fuping, ZHAO Enyuan, AI Chi, et al. Effect of cement sheath properties on casing stress in creep formation[J]. Oil Drilling & Production Technology, 2012, 34(4): 36–39. doi: 10.3969/j.issn.1000-7393.2012.04.010
[20] 胡其志,王芝超,丁志刚. 基于分数阶导数的岩石蠕变本构模型研究[J]. 河南理工大学学报(自然科学版),2021,40(6):163–168. HU Qizhi, WANG Zhichao, DING Zhigang. Study on the rock creep constitutive model based on fractional derivative[J]. Journal of Henan Polytechnic University(Natural Science), 2021, 40(6): 163–168.
[21] 苏彦,张向东,周林林. 岩石分数阶蠕变损伤本构模型研究[J]. 河北工程大学学报(自然科学版),2020,37(1):19–23. SU Yan, ZHANG Xiangdong, ZHOU Linlin. Study on constitutive model of fractional creep damage of rock[J]. Journal of Hebei University of Engineering (Natural Science Edition), 2020, 37(1): 19–23.
-
期刊类型引用(7)
1. 何斌斌,柳华杰,郑若臣,步玉环,殷慧,霍美桦,张军义,马小龙. 盐岩地层矿物离子对水泥浆性能的影响规律. 中国石油大学学报(自然科学版). 2024(06): 85-94 . 百度学术
2. 周军,胡承强,彭井宏,梁光川,黄薪宇,马俊杰,王涛. 基于腔体稳定性的盐岩储气库注采方案优化研究. 断块油气田. 2023(01): 161-167 . 百度学术
3. 霍宏博,刘东东,陶林,王德英,宋闯,何世明. 基于CO_2提高采收率的海上CCUS完整性挑战与对策. 石油钻探技术. 2023(02): 74-80 . 本站查看
4. 王涛,申峰,展转盈,窦倩,郭庆. 页岩气小井眼水平井纳米增韧水泥浆固井技术. 石油钻探技术. 2023(03): 51-57 . 本站查看
5. 孙晓峰,陶亮,朱志勇,于福锐,孙铭浩,赵元喆,曲晶瑀. 页岩储层水平扩径井段固井顶替效率数值模拟研究. 特种油气藏. 2023(04): 139-145 . 百度学术
6. 赵新学,陈鹏,王木乐,郭伟成,马文涛,王世红,郭永胜. 普光气田套管补贴用抗硫膨胀管及其性能测试. 断块油气田. 2023(06): 1034-1039 . 百度学术
7. 俞天喜,王雷,陈蓓蓓,孙锡泽,李圣祥,朱振龙. 基于盐溶和蠕变作用的含盐储层裂缝导流能力变化规律研究与应用. 特种油气藏. 2023(06): 157-164 . 百度学术
其他类型引用(0)