机械式垂直钻具稳定平台影响因素模拟研究

李然然, 张凯, 柴麟, 张龙, 刘宝林

李然然, 张凯, 柴麟, 张龙, 刘宝林. 机械式垂直钻具稳定平台影响因素模拟研究[J]. 石油钻探技术, 2022, 50(3): 51-60. DOI: 10.11911/syztjs.2021106
引用本文: 李然然, 张凯, 柴麟, 张龙, 刘宝林. 机械式垂直钻具稳定平台影响因素模拟研究[J]. 石油钻探技术, 2022, 50(3): 51-60. DOI: 10.11911/syztjs.2021106
LI Ranran, ZHANG Kai, CHAI Lin, ZHANG Long, LIU Baolin. Simulation Research on Influencing Factors of Stabilization Platform for Mechanical Vertical Drilling Tools[J]. Petroleum Drilling Techniques, 2022, 50(3): 51-60. DOI: 10.11911/syztjs.2021106
Citation: LI Ranran, ZHANG Kai, CHAI Lin, ZHANG Long, LIU Baolin. Simulation Research on Influencing Factors of Stabilization Platform for Mechanical Vertical Drilling Tools[J]. Petroleum Drilling Techniques, 2022, 50(3): 51-60. DOI: 10.11911/syztjs.2021106

机械式垂直钻具稳定平台影响因素模拟研究

基金项目: 国家重点研发计划项目“5000米智能地质钻探技术装备研发及应用示范”课题五“智能地质钻探技术及装备仪器研制”(编号:2018YFC0603405)、战略性国际科技创新合作重点专项“多金属矿岩心钻探关键技术装备联合研发及示范”(编号:2016 YFE0202200)资助
详细信息
    作者简介:

    李然然(1997—),女,河北邯郸人,2018年毕业于中国地质大学(北京)地质工程专业,在读硕士研究生,主要从事井斜控制理论及自动垂直钻井技术研究。E-mail:18813055699@163.com。

  • 中图分类号: TE929

Simulation Research on Influencing Factors of Stabilization Platform for Mechanical Vertical Drilling Tools

  • 摘要:

    配备机械式稳定平台的自动垂直钻具,由于无电子元件、耐高温性能好、成本相对低廉,是深井钻井中防斜打直的较好选择,但如何进一步提高该工具的纠斜精度是一个难点。为此,针对机械式稳定平台的动力学特性,基于典型的稳定平台结构及其工作原理,建立了机械式稳定平台理论分析模型及Adams动力学模拟模型,通过理论计算及模拟计算,研究了影响稳定平台性能的因素,确定了影响机械式稳定平台性能的主要因素及其影响规律。研究得出:偏重块长度和内外半径、井斜角和盘阀间动摩擦系数对稳定平台性能的影响较大。根据研究结果,总结出该机械式稳定平台结构参数的优化方向以及推荐取值,可为进一步优化设计机械式稳定平台的自动垂直钻具提供参考。

    Abstract:

    As the automatic vertical drilling tool equipped with a mechanical stable platform requires no electronic components and possesses good high-temperature resistance with low costs, it is a good choice for deviation prevention in deep well drilling. However,it has difficulty in further improving the deviation correction accuracy of the tool. Therefore, according to its dynamic characteristics, two mechanical stable platform models: a theoretical analytical one, and Adams dynamic simulation one were built on the basis of a typical stable platform structure and its working principle. Then, theoretical calculations and simulation calculations were conducted to study the factors affecting the performance of the stable platform, and the main influencing factors and laws governing the performance of the mechanical stable platform were determined. The research results revealed key performance influencers, which included the length, the inner and outer radius of the eccentric block, the inclination angle, and the dynamic friction coefficient between disc valves.Based on the results, the optimization direction and recommended value of the structural parameters of the mechanical stable platform were also summarized, and they can provide a reference for further design optimization for automatic vertical drilling tools with mechanical stable platforms.

  • 图  1   动态推靠机械式自动垂直钻具结构示意

    Figure  1.   Structure of mechanical vertical drilling tools with dynamic pushing pistons

    图  2   摩擦力对偏重块偏转位置的影响示意

    Figure  2.   Effect of friction on the deflection position of an eccentric block

    图  3   偏重块受力矩示意

    Figure  3.   Torque of the eccentric block

    图  4   偏重块在井眼中的位置及受力示意

    Figure  4.   Position and force of the eccentric block in a wellbore

    图  5   上盘阀结构示意

    Figure  5.   Upper disc valve structure

    图  6   稳定平台的三维模拟模型

    Figure  6.   3D simulation model of a stable platform

    图  7   3个巴掌的推靠力测试曲线

    Figure  7.   Pushing force test curve of three slaps

    图  8   稳定平台不同上盘阀外径下的临界夹角及稳定时间

    Figure  8.   Influence curve of the outer diameter of the upper disc valve on critical angle and stabilization time of the stable platform

    图  9   偏重块密度对稳定平台性能的影响

    Figure  9.   Influence of eccentric block density on stable platform performance

    图  10   偏重块长度对稳定平台性能的影响

    Figure  10.   Influence of eccentric block length on stable platform performance

    图  11   盘阀间压力差对稳定平台性能的影响

    Figure  11.   Curve showing the influence of pressure differences between disc valves on stable platform performance

    图  12   井斜角对稳定平台性能的影响曲线

    Figure  12.   Curve showing the influence of the inclination angle on stable platform performance

    图  13   盘阀间动摩擦系数对稳定平台性能的影响

    Figure  13.   Curve showing the influence of the dynamic friction coefficient between disc valves on stable platform performance

    表  1   稳定平台部件间约束关系

    Table  1   Constraint relationship between stable platform components

    模型名称构件1构件2约束副放置位置
    JOINT_1下盘阀大地转动副质心
    JOINT_2下盘阀下部轴承固定副质心
    JOINT_3下盘阀上部轴承固定副质心
    JOINT_4上部轴承偏重块圆柱副质心
    JOINT_5下部轴承偏重块圆柱副质心
    JOINT_6下部轴承偏重块平面副质心
    JOINT_7偏重块上盘阀移动副质心
    下载: 导出CSV

    表  2   模拟结果与理论计算结果对比

    Table  2   Comparison of simulation results with theoretical calculations

    井斜角/(°)模拟临界夹角/(°)理论临界夹角/(°)相对误差,%
    1.545.6446.772.476
    2.032.5033.121.908
    3.020.9721.371.907
    下载: 导出CSV

    表  3   模拟结果与试验结果对比

    Table  3   Comparison of simulation results with experimental results

    井斜角/
    (°)
    转速/
    r/min
    模拟临界
    夹角/(°)
    试验临界
    夹角/(°)
    相对
    误差,%
    1.6454.634.614.97
    1.61004.635.007.99
    2.53025.4024.682.82
    2.510025.4024.204.72
    下载: 导出CSV

    表  4   腰形孔内外半径模拟结果

    Table  4   Simulation results of the inner and outer radius of waist hole

    情况内半径/mm外半径/mm临界夹角/(°)稳定时间/s
    内半径增大,
    外半径不变
    111720.944141.66
    131720.943136.20
    151720.941134.81
    外半径增大,
    内半径不变
    111720.944141.66
    111820.945159.25
    111920.947193.63
    内外半径同时
    增大相同数值
    111720.944141.66
    121820.944145.66
    131920.944163.58
    内外半径同时
    减小相同数值
    111720.944141.66
    101620.944142.18
    91520.944151.25
    下载: 导出CSV

    表  5   偏重块所用金属的密度和熔点

    Table  5   Densities and melting points for metals of eccentric blocks

    金属密度/(g·cm−3熔点/℃
    4.511 668
    6.511 855
    45#钢7.801 538
    8.901 495
    10.282 623
    11.502 157
    下载: 导出CSV

    表  6   偏重块内外半径对稳定平台性能影响的模拟结果

    Table  6   Simulation results of influence of the inner and outer radius of eccentric block on stable platform performance

    情况偏重块
    内半径/mm
    偏重块
    外半径/mm
    临界
    夹角/(°)
    稳定
    时间/s
    内半径增加,
    外半径不变
    157520.94164.75
    207521.19170.00
    257521.61171.40
    外半径增大,
    内半径不变
    157520.94164.75
    158017.10156.07
    158514.18153.24
    内外半径同时
    增大相同数值
    157520.94164.75
    208017.27164.70
    258514.47161.47
    内外半径同时
    减小相同数值
    157520.94164.75
    107025.94168.69
    56533.02171.47
    下载: 导出CSV

    表  7   优化机械式稳定平台时参数变化趋势

    Table  7   Parameter changing trend when optimizing a mechanical stable platform

    参数参数优化方向 参数优化建议
    控制精度提高稳定效率提高
    上盘阀外径减小尽可能减小
    腰形孔外半径减小尽可能减小
    偏重块密度增大8~10 g⁄cm3
    偏重块长度增大增大3 000~4 000 mm
    偏重块内半径减小7.5~12.5 mm
    偏重块外半径减小67.5~72.5 mm
    盘阀间压力差减小尽可能减小
    盘阀间动摩擦系数减小减小尽可能减小
     注:表中空白部分表示参数对稳定平台控制精度或稳定效率的影响较小。
    下载: 导出CSV
  • [1] 叶建良,张伟,谢文卫. 我国实施大洋钻探工程的初步设想[J]. 探矿工程(岩土钻掘工程),2019,46(2):1–8.

    YE Jianliang, ZHANG Wei, XIE Wenwei. Preliminary thoughts on implementation of the ocean drilling project in China[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling), 2019, 46(2): 1–8.

    [2] 滕学清,刘洪涛,李宁,等. 塔里木博孜区块超深井自动垂直钻井难点与技术对策[J]. 石油钻探技术,2021,49(1):11–15. doi: 10.11911/syztjs.2020113

    TENG Xueqing, LIU Hongtao, LI Ning, et al. Difficulties and technical countermeasures for automatic vertical drilling in ultra-deep wells in the Bozi Block of the Tarim Basin[J]. Petroleum Drilling Techniques, 2021, 49(1): 11–15. doi: 10.11911/syztjs.2020113

    [3] 康建涛,汝大军,马哲,等. BH-VDT垂直钻井系统导向块结构优化设计及现场试验[J]. 石油钻采工艺,2019,41(4):475–479. doi: 10.13639/j.odpt.2019.04.012

    KANG Jiantao, RU Dajun, MA Zhe, et al. Structure design optimization and field test on the guide block of BH-VDT vertical drilling system[J]. Oil Drilling & Production Technology, 2019, 41(4): 475–479. doi: 10.13639/j.odpt.2019.04.012

    [4] 韩来聚,倪红坚,赵金海,等. 机械式自动垂直钻井工具的研制[J]. 石油学报,2008,29(5):766–768. doi: 10.3321/j.issn:0253-2697.2008.05.025

    HAN Laiju, NI Hongjian, ZHAO Jinhai, et al. Development of mechanical tool for automatic vertical drilling[J]. Acta Petrolei Sinica, 2008, 29(5): 766–768. doi: 10.3321/j.issn:0253-2697.2008.05.025

    [5] 柴麟,张凯,张耀澎,等. 小直径垂钻工具推力执行机构性能测试[J]. 探矿工程(岩土钻掘工程),2020,47(4):87–93.

    CHAI Lin, ZHANG Kai, ZHANG Yaopeng, et al. Performance test of the pushing actuator of the small diameter vertical drilling tool[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling), 2020, 47(4): 87–93.

    [6] 柴麟,张凯,刘宝林,等. 自动垂直钻井工具分类及发展现状[J]. 石油机械,2020,48(1):1–11.

    CHAI Lin, ZHANG Kai, LIU Baolin, et al. Classification and development status of automatic vertical drilling tools[J]. China Petroleum Machinery, 2020, 48(1): 1–11.

    [7] 张龙,张凯,周琴,等. 机械式自动垂钻工具粘滑振动抑制方法研究[J]. 探矿工程(岩土钻掘工程),2019,46(11):43–49.

    ZHANG Long, ZHANG Kai, ZHOU Qin, et al. Stick-slip vibration suppression method for mechanical automatic vertical drilling tools[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling), 2019, 46(11): 43–49.

    [8] 艾才云,王雄鹰,费维新. 一种新型垂直钻井工具[J]. 钻采工艺,2006,29(5):82–83. doi: 10.3969/j.issn.1006-768X.2006.05.028

    AI Caiyun, WANG Xiongying, FEI Weixin. A new type of vertical drilling tool[J]. Drilling & Production Technology, 2006, 29(5): 82–83. doi: 10.3969/j.issn.1006-768X.2006.05.028

    [9] 狄勤丰,张绍槐,周凤岐,等. 旋转导向工具设计及其旋转导向机理研究[J]. 西北大学学报(自然科学),1998,28(4):26–30.

    DI Qinfeng, ZHANG Shaohuai, ZHOU Fengqi, et al. The designing of the rotary steering tool and it’s steering mechanism[J]. Journal of Northwest University(Natural Science Edition), 1998, 28(4): 26–30.

    [10] 白家祉,苏义脑. 定向钻井过程中的三维井身随钻修正设计与计算[J]. 石油钻采工艺,1991,13(6):1–4.

    BAI Jiazhi, SU Yinao. Design and calculation of three-dimensional wellbore while drilling in directional drilling process[J]. Oil Drilling & Production Technology, 1991, 13(6): 1–4.

    [11] 李立鑫. 自动垂直钻具机械式稳定平台动力学及优化方法研究[D]. 北京: 中国地质大学(北京), 2018.

    LI Lixin. Research on dynamics and optimization method of mechanical stable platform in automatic vertical drilling tool[D]. Beijing: China University of Geosciences(Beijing), 2018.

    [12] 宋涛. 机械式自动垂直钻进系统的研究与设计[D]. 北京: 中国地质大学(北京), 2009.

    SONG Tao. The design and study on mechanical automatic vertical drilling system[D]. Beijing: China University of Geosciences (Beijing), 2009.

    [13] 杜劲,尹松,闫伟,等. 国内外井斜控制技术的发展[J]. 机械工程师,2007(2):22–24. doi: 10.3969/j.issn.1002-2333.2007.02.013

    DU Jin, YIN Song, YAN Wei, et al. The development of well deviation technique at home and abroad[J]. Mechanical Engineer, 2007(2): 22–24. doi: 10.3969/j.issn.1002-2333.2007.02.013

    [14] 宋执武,高德利. 不倒翁式偏心防斜钻具的设计[J]. 石油机械,2006,34(8):19–20. doi: 10.3969/j.issn.1001-4578.2006.08.006

    SONG Zhiwu, GAO Deli. Design of a tumbler eccentric and deviation-controlled drilling tool[J]. China Petroleum Machinery, 2006, 34(8): 19–20. doi: 10.3969/j.issn.1001-4578.2006.08.006

    [15] 李立鑫,薛启龙,刘宝林,等. 机械式自动垂直钻具控制性能分析及优化[J]. 地质科技情报,2018,37(3):268–274.

    LI Lixin, XUE Qilong, LIU Baolin, et al. Analysis and optimal design of control performance in automatic mechanical vertical drilling tool[J]. Geological Science and Technology Information, 2018, 37(3): 268–274.

    [16] 刘健海,温诗铸,樊幼温. 轴承动态摩擦力矩的试验分析[J]. 轴承,1991(6):32–35,56-57.

    LIU Jianhai, WEN Shizhu, FAN Youwen. Experimental analysis of bearing dynamic friction torque[J]. Bearing, 1991(6): 32–35,56-57.

    [17] 李松林. 自动垂直钻井系统VDS的形成与发展[J]. 国外石油机械,1999,10(5):10–14.

    LI Songlin. Formation and development of automatic vertical drilling system VDS[J]. Foreign Petroleum Machinery, 1999, 10(5): 10–14.

    [18] 赫雄. ADAMS动力学仿真算法及参数设置分析[J]. 传动技术,2005,19(3):27–30. doi: 10.3969/j.issn.1006-8244.2005.03.005

    HE Xiong. The analysis on ADAMS dynamic simulation algorithm and parameters selection[J]. Drive System Technique, 2005, 19(3): 27–30. doi: 10.3969/j.issn.1006-8244.2005.03.005

  • 期刊类型引用(2)

    1. 王江帅, 李军, 任美鹏, 柳贡慧, 杨宏伟, 骆奎栋. 控压钻井环空多相流控压响应时间研究. 石油机械. 2019(05): 61-65 . 百度学术
    2. 费旻, 林怀蔚, 邢玮, 李云海. 基于MATLAB的线性控制系统稳定性仿真研究. 科技资讯. 2017(30): 34-36 . 百度学术

    其他类型引用(0)

图(13)  /  表(7)
计量
  • 文章访问数:  292
  • HTML全文浏览量:  223
  • PDF下载量:  39
  • 被引次数: 2
出版历程
  • 收稿日期:  2020-12-28
  • 修回日期:  2021-09-22
  • 网络出版日期:  2022-04-05
  • 刊出日期:  2022-06-08

目录

    /

    返回文章
    返回