脉动式扭转冲击钻井工具工作特性分析与测试

汪伟, 柳贡慧, 李军, 查春青, 连威, 夏铭莉

汪伟,柳贡慧,李军,等. 脉动式扭转冲击钻井工具工作特性分析与测试[J]. 石油钻探技术,2022, 50(5):63-69. DOI: 10.11911/syztjs.2021101
引用本文: 汪伟,柳贡慧,李军,等. 脉动式扭转冲击钻井工具工作特性分析与测试[J]. 石油钻探技术,2022, 50(5):63-69. DOI: 10.11911/syztjs.2021101
WANG Wei, LIU Gonghui, LI Jun, et al. Analysis and testing of the working characteristics of a thepulsating torsional impact drilling tool [J]. Petroleum Drilling Techniques,2022, 50(5):63-69. DOI: 10.11911/syztjs.2021101
Citation: WANG Wei, LIU Gonghui, LI Jun, et al. Analysis and testing of the working characteristics of a thepulsating torsional impact drilling tool [J]. Petroleum Drilling Techniques,2022, 50(5):63-69. DOI: 10.11911/syztjs.2021101

脉动式扭转冲击钻井工具工作特性分析与测试

基金项目: 国家科技重大专项“复合冲击破岩技术研究及工具研制”(编号:2016ZX05021-003)和中国石油天然气集团有限公司–中国石油大学(北京)战略合作科技专项“准噶尔盆地玛湖中下组合和吉木萨尔陆相页岩油高效勘探开发理论及关键技术研究”(编号:ZLZX2020-01)联合资助
详细信息
    作者简介:

    汪伟(1992—),男,安徽桐城人,2014年毕业于中国石油大学(北京)石油工程专业,2017年获中国石油大学(北京)油气井工程专业硕士学位,在读博士研究生,主要从事井下提速工具设计研究。E-mail: cupwangwei53@163.com。

  • 中图分类号: TE921+.2

Analysis and Testing of the Working Characteristics of a Pulsating Torsional Impact Drilling Tool

  • 摘要:

    为抑制PDC钻头钻进硬地层时的粘滑振动,设计了一种可以为PDC钻头提供周向冲击载荷的脉动式扭转冲击钻井工具,并在介绍其结构设计和分析其工作原理的基础上,建立了计算其周向扭矩、直井工况下冲击功的数学模型,通过算例分析了其工作特性。分析结果表明:脉动式扭转冲击钻井工具的周向扭矩随排量增大而增大,随节流喷嘴直径增大而减小;在直井中的冲击功随钻柱扭矩和扭转角度增加而增大,随钻压增大而减小。脉动式扭转冲击钻井工具样机性能室内测试结果表明,该钻井工具能实现高频扭转冲击,且其工作频率、周向腔体压差和周向扭矩均随排量增大而增大。研究和测试结果表明,脉动式扭转冲击钻井工具的结构设计合理,能够为PDC钻头提供周期性扭转冲击载荷,抑制PDC钻头的粘滑振动。

    Abstract:

    A pulsating torsional impact drilling tool was designed to provide a polycrystalline diamond compact (PDC) bit with a circumferential impact load to suppress the stick-slip vibration of the bit when it drills into hard formations. First, the structural design of the drilling tool was introduced, and its working principle was analyzed. Then, on this basis, mathematical models were established for calculating its impact energy in vertical wells and circumferential torque. Finally, the working characteristics of the drilling tool were analyzed. The analysis results showed that the circumferential torque of the pulsating torsional impact drilling tool increased with the increase in flow rate and decreased with the increase in the diameter of the throttle nozzle. Its impact energy in vertical wells became higher with the increase in the torque and rotation of the drill string; however it declined as the weight on bit (WOB) increased. The performance of the pulsating torsional impact drilling tool prototype was explored through laboratory tests. The test results were positive and indicated that the drilling tool could achieve high-frequency torsional impact, and its operating frequency, circumferential cavity pressure difference, and circumferential torque were all enhanced with the increase in flow rate. The research and test results demonstrate that the pulsating torsional impact drilling tool has an acceptable structural design, which can provide periodic torsional impact loads for PDC bits and suppress the stick-slip vibration.

  • 图  1   脉动式扭转冲击钻井工具的基本结构

    1.上接头;2.外壳体;3.涡轮动力总成;4.旋转轴;5.周向腔体;6.节流喷嘴;7.钻头座

    Figure  1.   Structure of the pulsating torsional impact drilling tool

    图  2   工作状态示意

    Figure  2.   Working state diagram

    图  3   直井钻柱的变形简化模型

    Figure  3.   Simplified model of drill string deformation invertical wells

    图  4   不同直径节流喷嘴下脉动式扭转冲击钻井工具周向扭矩与排量的关系

    Figure  4.   Variation of circumferential torque with flow rate of pulsating torsional impact drilling tools with different diameters of throttle nozzles

    图  5   钻柱周向扭转5°时不同井深下的扭矩差

    Figure  5.   Torque difference at different well depths with the drill string circumferential rotation of 5 °

    图  6   不同扭转角下冲击功随钻柱扭矩变化的曲线

    Figure  6.   Variation curves of impact energy with drill string torque under different rotation angles

    图  7   不同钻压条件下冲击功随钻柱扭矩变化的曲线

    Figure  7.   Variation curves of impact energy with drill string torque under different WOB

    图  8   扭转冲击工具工具测试装置

    Figure  8.   Test system for torsional impact tool

    图  9   脉动式扭转冲击钻井工具周向腔体内压力的变化曲线

    Figure  9.   Variation curve of circumferential cavity pressure of the pulsating torsional impact drilling tool

    图  10   脉动式扭转冲击钻井工具不同排量下的冲击频率

    Figure  10.   Variation curve of impact frequency of pulsating torsional impact drilling tool with flow rate

    图  11   脉动式扭转冲击钻井工具周向腔体不同排量下的压差

    Figure  11.   Variation curve of circumferential cavity pressure difference of pulsating torsional impact drilling tool with flow rate

    图  12   脉动式扭转冲击钻井工具不同排量下的周向扭矩

    Figure  12.   Variation curve of circumferential torque of pulsating torsional impact drilling tool with flow rate

  • [1] 马凤清. 哈山3井火成岩地层快速钻井技术[J]. 石油钻探技术,2014,42(2):112–116.

    MA Fengqing. Fast drilling technique through igneous rocks in well Hashan 3[J]. Petroleum Drilling Techniques, 2014, 42(2): 112–116.

    [2] 滕学清,狄勤丰,李宁,等. 超深井钻柱粘滑振动特征的测量与分析[J]. 石油钻探技术,2017,45(2):32–39.

    TENG Xueqing, DI Qinfeng, LI Ning, et al. Measurement and analysis of stick-slip characteristics of drill string in ultra-deep wells[J]. Petroleum Drilling Techniques, 2017, 45(2): 32–39.

    [3] 朱全塔,邹宗明,黄兵,等. 导致钻铤失效的井下振动分析及其解决方案[J]. 天然气工业,2016,36(12):80–86. doi: 10.3787/j.issn.1000-0976.2016.12.011

    ZHU Quanta, ZOU Zongming, HUANG Bing, et al. Downhole vibration causing a drill collar failure and solutions[J]. Natural Gas Industry, 2016, 36(12): 80–86. doi: 10.3787/j.issn.1000-0976.2016.12.011

    [4]

    KOVALYSHEN Y. Understanding root cause of stick-slip vibrations in deep drilling with drag bits[J]. International Journal of Non-Linear Mechanics, 2014, 67(12): 331–341.

    [5]

    TUCKER W R, WANG C. On the effective control of torsional vibrations in drilling systems[J]. Journal of Sound and Vibration, 1999, 224(1): 101–122. doi: 10.1006/jsvi.1999.2172

    [6] 王宏伟,韩飞,纪友哲,等. PDC 钻头粘滑控制技术现状及发展趋势[J]. 石油矿场机械,2016,45(7):104–107. doi: 10.3969/j.issn.1001-3482.2016.07.024

    WANG Hongwei, HAN Fei, JI Youzhe, et al. Status and development tendency of stick-slip controlling technology for PDC bit[J]. Oil Field Equipment, 2016, 45(7): 104–107. doi: 10.3969/j.issn.1001-3482.2016.07.024

    [7] 李美求,李嘉文,李宁,等. 周向冲击扭矩作用下PDC钻头的黏滑振动分析[J]. 石油钻采工艺,2018,40(3):287–292.

    LI Meiqiu, LI Jiawen, LI Ning, et al. Analysis on the stick-slip vibration of PDC bit under the effect of circumferential torque impact[J]. Oil Drilling & Production Technology, 2018, 40(3): 287–292.

    [8] 汪伟,柳贡慧,李军,等. 扭转冲击钻井工具的工作特性[J]. 断块油气田,2019,26(3):385–388.

    WANG Wei, LIU Gonghui, LI Jun, et al. Operating characteristics of torsional impact drilling tool[J]. Fault-Block Oil & Gas Field, 2019, 26(3): 385–388.

    [9] 李思琪,毕福庆,李玮,等. 扭转冲击钻井稳态钻进动力学特性及现场应用[J]. 中国石油大学学报(自然科学版),2019,43(2):97–104.

    LI Siqi, BI Fuqing, LI Wei, et al. Dynamic characteristics of steady torsional impact drilling and its field application[J]. Journal of China University of Petroleum (Edition of Natural Science), 2019, 43(2): 97–104.

    [10] 席岩,夏铭莉,孙念,等. 扭转冲击参数对PDC 钻头单齿破岩效率的影响[J]. 石油钻采工艺,2021,43(5):574–579.

    XI Yan, XIA Mingli, SUN Nian, et al. Influence of torsion impact parameters on single-tooth rock breaking efficiency of PDC bit[J]. Oil Drilling & Production Technology, 2021, 43(5): 574–579.

    [11] 田家林,唐磊,刘强,等. 恒扭提速钻具动力学特性研究与试验分析[J]. 中国海上油气,2022,34(4):203–212.

    TIAN Jialin, TANG Lei, LIU Qiang, et al. Dynamics characteristics study and experiment of constant torque speed-up drilling tool[J]. China Offshore Oil and Gas, 2022, 34(4): 203–212.

    [12] 刘书斌,倪红坚,张恒. 轴扭复合冲击工具的研制与应用[J]. 石油钻探技术,2021,48(5):69–76.

    LIU Shubin, NI Hongjian, ZHANG Heng. Development and applications of a compound axial and torsional impact drilling tool[J]. Petroleum Drilling techniques, 2021, 48(5): 69–76.

    [13] 陈杰,牟小军,李汉兴,等. 旋冲振荡钻井提速工具的研制与应用[J]. 断块油气田,2020,27(3):386–389.

    CHEN Jie,MOU Xiaojun,LI Hanxing,et al. Development and application of rotary-percussive and oscillatory drilling tool[J]. Fault-Block Oil & Gas Field, 2020, 27(3): 386–389.

    [14] 李玮,何选蓬,闫铁,等. 近钻头扭转冲击器破岩机理及应用[J]. 石油钻采工艺,2014,36(5):1–4.

    LI Wei, HE Xuanpeng, YAN Tie, et al. Rock fragmentation mechanism and application of near-bit torsion impacter[J]. Oil Drilling & Production Technology, 2014, 36(5): 1–4.

    [15]

    DEEN A, WEDEL R, NAYAN A, et al. Application of a torsional impact hammer to improve drilling efficiency[R]. SPE 147193, 2011.

    [16] 王四一,赵江鹏,赵建国. 扭力冲击器在煤矿井下硬岩钻进中的应用研究[J]. 煤矿机械,2018,39(10):139–141.

    WANG Siyi, ZHAO Jiangpeng, ZHAO Jianguo. Application research on torque impactor applications on hard rock drilling underground coal mine[J]. Coal Mine Machinery, 2018, 39(10): 139–141.

    [17] 李宁,周小君,周波,等. 塔里木油田HLHT区块超深井钻井提速配套技术[J]. 石油钻探技术,2017,45(2):10–14.

    LI Ning, ZHOU Xiaojun, ZHOU Bo, et al. Technologies for fast drilling ultra-deep wells in the HLHT block, Tarim oilfield[J]. Petroleum Drilling Techniques, 2017, 45(2): 10–14.

    [18] 张海山,葛俊瑞,杨进,等. 扭力冲击器在海上深部地层的提速效果评价[J]. 断块油气田,2014,21(2):249–251.

    ZHANG Haishan, GE Junrui, YANG Jin, et al. Effect evaluation of torsion impactor for increasing ROP in offshore deep formation[J]. Fault-Block Oil & Gas Field, 2014, 21(2): 249–251.

    [19] 玄令超, 管志川, 刘永旺, 等. 射流式扭转冲击钻井工具: CN103774983A[P]. 2014-05-07.

    XUAN Lingchao, GUAN Zhichuan, LIU Yongwang, et al. Jet torsion percussion drilling tool: CN103774983A[P]. 2014-05-07.

    [20] 祝效华, 石昌帅, 汤历平. 一种用于硬地层的涡轮式扭转冲击钻具: CN201554363U[P]. 2010-08-18.

    ZHU Xiaohua, SHI Changshuai, TANG Liping. A turbine type torsional percussion drill for hard formation: CN201554363U[P]. 2010-08-18.

    [21] 查春青, 柳贡慧, 李军. 扭转冲击钻井提速工具: CN108625769B [P]. 2019-06-25.

    ZHA Chunqing, LIU Gonghui, LI Jun. Speed up tool for torsional percussion drilling: CN108625769B[P]. 2019-06 -25.

    [22] 韩飞,罗淮东,张全立,等. 扭力冲击器设计与仿真分析[J]. 石油机械,2019,47(3):19–23.

    HAN Fei, LUO Huaidong, ZHANG Quanli, et al. Design and simulation analysis of torque thruster[J]. China Petroleum Machinery, 2019, 47(3): 19–23.

    [23] 赵建军,崔晓杰,赵晨熙,等. 高频液力扭力冲击器设计与试验研究[J]. 石油化工应用,2018,37(2):5–10. doi: 10.3969/j.issn.1673-5285.2018.02.002

    ZHAO Jianjun, CUI Xiaojie, ZHAO Chenxi, et al. Design and experimental research on high frequency hydraulic torsional impac-tor[J]. Petrochemical Industry Application, 2018, 37(2): 5–10. doi: 10.3969/j.issn.1673-5285.2018.02.002

  • 期刊类型引用(6)

    1. 董添奇,杨旭辉. 近钻头钻压和扭矩的高精度温度补偿方法. 石油机械. 2024(04): 71-79 . 百度学术
    2. 孙养清,易先中,万继方,易军,吴霁薇,刁斌斌,陈志湘. 机械式复合冲击器的工作特性分析. 石油机械. 2024(06): 29-37+108 . 百度学术
    3. 白彬珍,曾义金,芦鑫,张进双,陶亮. 钻头破岩能量与岩石自适应匹配提速技术. 石油钻探技术. 2023(03): 30-36 . 本站查看
    4. 罗杰,柳军,李强. 深井钻柱纵-扭耦合下的黏滑振动特性分析. 石油机械. 2023(08): 139-147 . 百度学术
    5. 汪伟,陈杰,张鹏翔,柳贡慧,李军,查春青. 旋转配流式扭转冲击钻具设计与分析. 断块油气田. 2023(06): 1047-1052 . 百度学术
    6. 兰永飞,韩玉香,陈明勇,王虎. 扭力冲击器-螺杆复合钻进工艺应用实践. 钻探工程. 2023(S1): 399-404 . 百度学术

    其他类型引用(2)

图(12)
计量
  • 文章访问数:  346
  • HTML全文浏览量:  181
  • PDF下载量:  68
  • 被引次数: 8
出版历程
  • 收稿日期:  2021-12-09
  • 修回日期:  2022-05-14
  • 网络出版日期:  2022-04-26
  • 刊出日期:  2022-09-29

目录

    /

    返回文章
    返回