Sand-Carrying Experiments with Supercritical CO2 in a Horizontal Annulus
-
摘要:
为明确超临界CO2在水平段环空的携砂性能,分析关键施工参数对其携砂性能的影响,根据相似原理设计了超临界CO2水平环空携砂试验装置,试验研究了超临界CO2注入质量流量、砂比、出口压力和流体温度对砂粒在水平环空中运移的影响。试验结果表明:超临界CO2能够以悬浮输送的方式在水平环空内有效携砂,增大其质量流量,会增强环空内流体的紊流强度,进而提高悬浮携砂效果;在较高砂比下,水平环空底部更容易出现砂床,使过流面积减小,从而使砂粒运移速度增大;在相同注入条件下,环空内砂粒运移速度随出口压力升高而降低,但降低幅度逐渐减小;在合理温度范围内提高流体温度,有利于减少环空内砂粒的堆积。研究结果可为超临界CO2钻井和超临界CO2压裂优化设计关键施工参数提供参考。
Abstract:According to the similarity principle, a device for sand-carrying tests was developed to determine the sand-carrying performance of supercritical CO2 in the horizontal annulus and analyze the effects of key operating parameters on the sand-carrying performance. The device was employed to explore the influence of the injection mass flow, sand concentration, outlet pressure, and fluid temperature of supercritical CO2 on the sand migration in the horizontal annulus. The results showed that supercritical CO2 could effectively carry sand in the horizontal annulus by means of suspension transport, and the increase in its mass flow could enhance the turbulence intensity of the fluid in the annulus and improve the sand-carrying effect by suspension transport. In a high sand concentration, sand beds were likely to occur at the bottom of the annulus, which reduced the open area and raised the sand transport velocity. Under the same injection condition, the sand transport velocity in the annulus decreased with the increase of outlet pressure, but the amplitude of reduction is gradually lowering. In addition, a rise in fluid temperature was conducive to the accumulation reduction of sand in the annulus in an appropriate temperature range. The research results can provide a reference for optimizing the key construction parameter design in drilling and fracturing with supercritical CO2.
-
Keywords:
- supercritical CO2 /
- horizontal annulus /
- sand-carrying /
- similarity principle /
- drilling /
- fracturing
-
-
-
[1] 王海柱,沈忠厚,李根生. 超临界CO2开发页岩气技术[J]. 石油钻探技术,2011,39(3):30–35. doi: 10.3969/j.issn.1001-0890.2011.03.005 WANG Haizhu, SHEN Zhonghou, LI Gensheng. Feasibility analysis on shale gas exploitation with supercritical CO2[J]. Drilling Petroleum Techniques, 2011, 39(3): 30–35. doi: 10.3969/j.issn.1001-0890.2011.03.005
[2] 王海柱,李根生,郑永,等. 超临界CO2压裂技术现状与展望[J]. 石油学报,2020,41(1):116–126. doi: 10.7623/syxb202001011 WANG Haizhu, LI Gensheng, ZHENG Yong, et al. Research status and prospects of supercritical CO2 fracturing technology[J]. Acta Petrolei Sinica, 2020, 41(1): 116–126. doi: 10.7623/syxb202001011
[3] MIDDLETON R S, CAREY J W, CURRIER R P, et al. Shale gas and non-aqueous fracturing fluids: opportunities and challenges for supercritical CO2[J]. Applied Energy, 2015, 147: 500–509. doi: 10.1016/j.apenergy.2015.03.023
[4] ZHOU Junping, NAN Hu, XIAN Xuefu, et al. Supercritical CO2 fracking for enhanced shale gas recovery and CO2 sequestration: results, status and future challenges[J]. Advances in Geo-Energy Research, 2019, 3(2): 207–224. doi: 10.26804/ager.2019.02.10
[5] 王在明,邱正松,朱宽亮. 超临界二氧化碳钻井流体井筒温度传递特性[J]. 钻井液与完井液,2010,27(6):1–3. WANG Zaiming, QIU Zhengsong, ZHU Kuanliang. Research on features of wellbore temperature transmission for supercritical CO2 drilling fluid[J]. Drilling Fluid and Completion Fluid, 2010, 27(6): 1–3.
[6] 罗攀登,李涵宇,翟立军,等. 塔河油田超临界CO2压裂井筒与裂缝温度场[J]. 断块油气田,2019,26(2):225–230. LUO Pandeng, LI Hanyu, ZHAI Lijun, et al. Supercritical CO2 fracturing wellbore and fracture temperature field in Tahe Oilfield[J]. Fault-Block Oil & Gas Field, 2019, 26(2): 225–230.
[7] 张艳,楼一珊,牟春国,等. 超临界二氧化碳压裂过程中注入压力对致密砂岩力学特征的影响[J]. 石油钻采工艺,2019,41(2):242–248. ZHANG Yan, LOU Yishan, MOU Chunguo, et al. Effects of supercritical carbon dioxide fracturing on rock mechanics characteristics of tight sandstone gas reservoirs[J]. Oil Drilling & Production Technology, 2019, 41(2): 242–248.
[8] 丁璐,倪红坚. 超临界二氧化碳钻井时瞬态波动压力[J]. 断块油气田,2020,27(1):117–121. DING Lu,NI Hongjian. Transient surge and swab pressure analysis of supercritical carbon dioxide drilling[J]. Fault-Block Oil & Gas Field, 2020, 27(1): 117–121.
[9] 张越琪,苟利鹏,乔文波,等. 致密油藏超临界二氧化碳吞吐开发特征实验研究[J]. 特种油气藏,2021,28(1):130–135. ZHANG Yueqi, GOU Lipeng, QIAO Wenbo, et al. Experimental study on development characteristics of supercritical CO2 huff and puff in tight oil reservoirs[J]. Special Oil & Gas Reservoirs, 2021, 28(1): 130–135.
[10] 仲冠宇,左罗,蒋廷学,等. 页岩气井超临界二氧化碳压裂起裂压力预测[J]. 断块油气田,2020,27(6):710–714. ZHONG Guanyu,ZUO Luo,JIANG Tingxue,et al. Fracture initiation pressure prediction for shale gas well fracturing with super-critical carbon dioxide[J]. Fault-Block Oil & Gas Field, 2020, 27(6): 710–714.
[11] 程宇雄,李根生,王海柱,等. 超临界CO2 连续油管喷射压裂可行性分析[J]. 石油钻采工艺,2013,35(6):73–77. CHENG Yuxiong, LI Gensheng, WANG Haizhu, et al. Feasibility analysis on coiled-tubing jet fracturing with supercritical CO2[J]. Oil Drilling & Production Technology, 2013, 35(6): 73–77.
[12] 王海柱,李根生,沈忠厚,等. 超临界CO2钻井与未来钻井技术发展[J]. 特种油气藏,2012,19(2):1–5. doi: 10.3969/j.issn.1006-6535.2012.02.001 WANG Haizhu, LI Gensheng, SHEN Zhonghou, et al. Supercritical carbon dioxide drilling and the development of future drilling technology[J]. Special Oil & Gas Reservoirs, 2012, 19(2): 1–5. doi: 10.3969/j.issn.1006-6535.2012.02.001
[13] 李根生,王海柱,沈忠厚,等. 超临界CO2射流在石油工程中应用研究与前景展望[J]. 中国石油大学学报(自然科学版),2013,37(5):76–80. LI Gensheng, WANG Haizhu, SHEN Zhonghou, et al. Application investigations and prospects of supercritical carbon dioxide jet in petroleum engineering[J]. Journal of China University of Petroleum (Edition of Natural Science), 2013, 37(5): 76–80.
[14] WANG Haizhu, LI Gensheng, SHEN Zhonghou, et al. Experiment on rock breaking with supercritical carbon dioxide jet[J]. Journal of Petroleum Science & Engineering, 2015, 127: 305–310.
[15] WANG Ruihe, DU Yukun, NI Hongjian, et al. Hydrodynamic analysis of suck-in pulsed jet in well drilling[J]. Journal of Hydrodynamics, Ser. B, 2011, 23(1): 34–41. doi: 10.1016/S1001-6058(10)60085-6
[16] DU Yukun, WANG Ruihe, NI Hongjian, et al. Determination of rock-breaking performance of high-pressure supercritical carbon dioxide jet[J]. Journal of Hydrodynamics, 2012, 24(4): 554–560. doi: 10.1016/S1001-6058(11)60277-1
[17] ZHENG Yong, WANG Haizhu, YANG Bing, et al. CFD-DEM simulation of proppant transport by supercritical CO2 in a vertical planar fracture[J]. Journal of Natural Gas Science and Engineering, 2020, 84: 103647. doi: 10.1016/j.jngse.2020.103647
[18] 金军,王冉. 超临界CO2注入与页岩气储层相互作用的研究进展[J]. 断块油气田,2018,25(3):363–366. JIN Jun,WANG Ran. Research progress of supercritical CO2 injection and its interaction with shale gas reservoirs[J]. Fault-Block Oil & Gas Field, 2018, 25(3): 363–366.
[19] 王瑞和,倪红坚,宋维强,等. 超临界二氧化碳钻井基础研究进展[J]. 石油钻探技术,2018,46(2):1–9. WANG Ruihe, NI Hongjian, SONG Weiqiang, et al. The development of fundamental research on supercritical carbon dioxide drilling[J]. Petroleum Drilling Techniques, 2018, 46(2): 1–9.
[20] 沈忠厚,王海柱,李根生. 超临界CO2钻井水平井段携岩能力数值模拟[J]. 石油勘探与开发,2011,38(2):233–236. doi: 10.1016/S1876-3804(11)60028-1 SHEN Zhonghou, WANG Haizhu, LI Gensheng. Numerical simulation of the cutting-carrying ability of supercritical carbon dioxide drilling at horizontal section[J]. Petroleum Exploration and Develoment, 2011, 38(2): 233–236. doi: 10.1016/S1876-3804(11)60028-1
[21] 李良川,王在明,邱正松,等. 超临界二氧化碳钻井流体携岩特性实验[J]. 石油学报,2011,32(2):355–359. LI Liangchuan, WANG Zaiming, QIU Zhengsong, et al. An experimental study on carrying cuttings features for supercritical carbon dioxide drilling fluid[J]. Acta Petrolei Sinica, 2011, 32(2): 355–359.
[22] 霍洪俊,王瑞和,倪红坚,等. 超临界二氧化碳在水平井钻井中的携岩规律研究[J]. 石油钻探技术,2014,42(2):12–17. HUO Hongjun, WANG Ruihe, NI Hongjian, et al. Cuttings carrying pattern of supercritical carbon dioxide in horizontal wells[J]. Petroleum Drilling Techniques, 2014, 42(2): 12–17.
[23] HUO Hongjun, WANG Ruihe, NI Hongjian, et al. Study of critical annulus up-returning velocity of cuttings carried by supercritical CO2 in deviated well[J]. Journal of CO2 Utilization, 2017, 20: 105–112. doi: 10.1016/j.jcou.2017.04.013
[24] 宋维强,王瑞和,倪红坚,等. 水平井段超临界CO2携岩数值模拟[J]. 中国石油大学学报(自然科学版),2015,39(2):63–68. SONG Weiqiang, WANG Ruihe, NI Hongjian, et al. Numerical simulation of cuttings transport capability of supercritical carbon dioxide in horizontal wells[J]. Journal of China University of Petroleum (Edition of Natural Science), 2015, 39(2): 63–68.
[25] 宋维强,霍洪俊,王瑞和,等. 直井段超临界二氧化碳携岩数值模拟分析[J]. 重庆大学学报,2015,38(3):100–106. doi: 10.11835/j.issn.1000-582X.2015.03.014 SONG Weiqiang, HUO Hongjun, WANG Ruihe, et al. Numerical simulation of cutting-carrying efficiency of supercritical carbon dioxide in vertical well[J]. Journal of Chongqing University, 2015, 38(3): 100–106. doi: 10.11835/j.issn.1000-582X.2015.03.014
[26] 王海柱. 超临界CO2钻井井筒流动模型与携岩规律研究[D]. 北京: 中国石油大学(北京), 2011. WANG Haizhu. Research on Wellbore Flow Model and Cutting-carrying Law of Supercritical CO2 Drilling [D]. Beijing: China University of Petroleum-Beijing, 2011.
-
期刊类型引用(7)
1. 王忠良,徐文远,王文泽,梁梅,贺杰,钱晨,邹华宝. 结合伽马成像技术的三维地质建模在页岩油地质导向中的应用. 西安石油大学学报(自然科学版). 2024(02): 112-119 . 百度学术
2. 曲博文,谭宝海,张凯,陈雪莲. 自适应声波测井换能器激励电路设计. 石油钻探技术. 2024(06): 141-147 . 本站查看
3. 孙轶伦,潘磊,李海滨,王来智,周建新. 旋转导向近钻头随钻伽马数据成像处理技术. 石油地质与工程. 2022(01): 99-103+108 . 百度学术
4. 刘卫彬,徐兴友,张君峰,陈珊,白静,刘畅,李耀华. 陆相页岩地层地质-工程一体化水平井精确钻探技术——以松辽盆地吉页油1HF井为例. 中国地质. 2022(06): 1808-1822 . 百度学术
5. 马荣华,赵嵩. 基于果蝇算法的空间机械臂最优抑振轨迹规划方法. 机械设计与研究. 2022(06): 49-52 . 百度学术
6. 李继博,钱德儒,郑奕挺,张卫,吴金平. 近钻头伽马高精度实时成像技术研究与应用. 石油钻探技术. 2021(03): 135-141 . 本站查看
7. 李洪强,王瑞和. 近钻头伽马成像仪测量结果环境校正方法研究. 石油钻探技术. 2021(03): 142-150 . 本站查看
其他类型引用(4)