预探井杨柳1井钻井提速关键技术

Key Technologies for ROP Improvement in Exploratory Well Yangliu-1

  • 摘要: 杨柳1井为普光气田周边区块的一口预探井,设计井深5 850.00 m,因陆相地层软硬交错、倾角大、须家河组研磨性强和裂缝性地层发育等问题,导致钻井过程中存在提速困难、井身质量控制难度大、钻井液漏失量大等技术难题。为此,根据该井地层岩性特征,优选应用了泡沫/空气钻井技术以提高上部陆相地层机械钻速、“螺杆钻具+复合钻头”钻井提速技术以提高须家河组高研磨性地层机械钻速、预弯曲动力学防斜打快技术以提高井身质量、裂缝性地层防漏堵漏技术以提高堵漏成功率,确保该井顺利钻至井深5 890.00 m完钻,平均机械钻速2.77 m/h,与邻井相比有较大幅度的提高,且未出现严重的井下故障,减少了钻头使用量,缩短了堵漏时间,取得了良好的经济效益。杨柳1井实现了钻探目的,完善了该区块的地质资料,为今后该区块的钻井积累了提速经验。

     

    Abstract: Well Yangliu-1 is an exploratory well in the surrounding blocks of Puguang Gas Field, with a design well depth of 5 850.00 m. Problems such as interlaced soft and hard continental strata, large dip angles, strong abrasiveness of the Xujiahe Formation, fractured strata were encountered, leading to difficulties in improving the ROP(rate of penetration), hard quality control of the casing program, and serious lost circulation during the drilling process. According to the lithological characteristics of strata in the well area, the air/foam drilling technology was selected to improve the ROP of upper continental strata; the PDM(positive displacement motor) + compound bit technology was employed to improve the ROP in the highly abrasive strata of the Xujiahe Formation; the pre-bending dynamic inclining prevention and fast drilling technology was adopted to enhance casing program quality; the lost circulation prevention and control technology was applied in fractured strata for a higher success rate of lost circulation control. As a result, the well was successfully drilled to the depth of 5 890.00 m, with an average ROP of 2.77 m/h, which was greatly enhanced compared with that of adjoining wells. This process had no serious downhole failures, which reduced the bit usage, shortened the time for lost circulation control, and thus achieved good economic benefits. The drilling goal has been achieved in Well Yangliu-1, which enriches the geological data of this block and provides ROP improvement experience for the drilling in this block in the future.

     

/

返回文章
返回