ROP Improvement Technology for Horizontal Shale Oil Wells in Daqing Oilfield
-
摘要:
针对大庆油田古龙区块页岩油水平井钻井过程中存在井壁易失稳、摩阻扭矩大和钻井周期长等技术难点,以大庆页岩油高效快速开发为目的,分析了该区块地层特点和钻井施工难点,优化了三开井身结构,确保页岩目的层施工安全;根据实钻经验及现有技术水平,对井眼轨道进行优化,降低施工难度;针对二开直井段缩径、三开造斜段和水平段钻井周期长等问题,进行了井壁修整工具、旋冲螺杆钻井工具、清砂接头和水力振荡器等工具研究,并进行了钻井参数优化,形成了大庆油田页岩油水平井钻井提速技术。该技术在大庆油田古龙区块3口页岩油水平井进行了现场试验,平均完钻井深4 691 m,平均机械钻速19.03 m/h,机械钻速提高53.7%,平均钻井周期35.23 d。研究与现场试验表明,大庆油田页岩油水平井钻井提速技术可为大庆油田页岩油高效开发提供技术支撑。
Abstract:Technical difficulties including borehole wall instability, large friction torque, and long drilling cycles are encountered while drilling horizontal shale oil wells in the Gulong Block of Daqing Oilfield. For the purpose of efficient and rapid development of shale oil, a series of research works have been carried out. In light of the formation characteristics and drilling construction difficulties of the block, a third-spud casing program was optimized to ensure safe well construction in the target shale formation. According to drilling practices and existing techniques, the wellbore trajectory was upgraded to reduce the construction difficulty. In addition, the research was performed considering the hole shrinkage in the second-spud vertical section and the long drilling cycles in the third-spud build-up and horizontal sections. The research was performed on the tools and technologies, such as borehole wall dressing tools, rotary screws, sand cleaning joints, and hydraulic oscillators, and the drilling parameters were optimized. Finally, a rate of penetration (ROP) improvement technology for horizontal shale oil wells in Daqing Oilfield was developed. Field tests were conducted in three horizontal wells in Daqing Oilfield, with an average well depth of 4 691 m, an average drilling cycle of 35.23 d, and an average ROP of 19.03 m/h (enhanced by 53.7%). The research and tests demonstrate that this technology can provide technical support for the efficient development of shale oil in Daqing Oilfield.
-
Keywords:
- shale oil /
- horizontal well /
- ROP improvement /
- drilling parameters /
- casing program /
- drilling speedup tool /
- Daqing Oilfield
-
天然气水合物(即可燃冰)是资源量丰富的高效清洁能源,是未来理想的战略接替能源之一[1-7],多个国家制定了天然气水合物的国家研究与开发计划,并列入了国家未来能源战略规划。天然气水合物勘探开发中,钻探取样是评估天然气水合物的分布、产状、赋存形态和饱和度等的重要手段,对于后续开发方案的制定有重要意义。
天然气水合物是类冰状物质,对温度压力的变化很敏感,受到扰动易挥发。2007年和2013年,国内采用国外公司的冲击式保压取样工具FPC和旋转式保压取样工具FRPC进行了天然气水合物勘探取样,证实了我国蕴藏有丰富的天然气水合物资源。中石化胜利石油工程有限公司钻井工艺研究院利用在井下工具和钻探取心技术方面的优势,于2007年开始进行天然气水合物钻探取样工具研制和取样技术研究,与国内多家天然气水合物领域的科研机构合作,突破了密封阀保压、低温保温关键技术;2017年,依托海洋石油708深水工程勘察船在天然气水合物赋存区成功取得保压样品,为我国海底天然气水合物自主勘探取样提供了技术支撑[8]。目前,国内虽然在天然气水合物钻探取样方面取得了一些技术进步,也针对研究过程中遇到的各种技术难点提出了解决措施,但这些措施不是唯一的解决方案。为此,笔者分析了取样工艺、取样工具尺寸确定、低温保温、密封阀和取样作业方式方面的技术难点,以2017年南海北部成功实施的保压取样方案为基础,提出了相应的技术措施;并分析总结了研发天然气水合物钻探取样技术遇到的技术难点,为今后取样技术的进一步发展和完善提供了技术参考。
1. 取样技术需求
1.1 南海环境的需求
南海属热带海洋季风气候,台风活动频繁、强度大、活动时间长,每月都有可能出现台风。南海大部分海区处于热带,加之受海洋影响,全年温度高、湿度大。南海大部分地区的全年相对湿度较大,年平均日最大相对湿度在80%以上;海流活动较强,有季风海流、黑潮暖流、上升流和潮流等。南海海域水深、域广、风大,既有交替的季风,又有猛烈的台风,海浪之大为中国陆缘海之冠。
受季风和台风等的影响,在南海能进行平稳作业的时间窗口较小,并且作业时间也有限。2017年海底水合物取样的时间为4月上旬至5月上旬,处于季风过渡期,期间风向多变,海洋石油708深水工程勘察船的抗风力不低于12级,保证了在9级风海况下的安全航行,采用动力定位不断调整船头方向,保证了作业安全;配备的主动和被动深度补偿装置弥补了海流活动的影响。取样工具出井口后迅速采取水域低温冷却措施,避免了高温造成天然气水合物迅速分解;取样设备采用不锈钢材料,并及时进行保养,防止了海洋高温潮湿环境对取样设备造成锈蚀。
1.2 天然气水合物性质的需求
天然气水合物是由天然气与水在高压低温条件下形成的类冰状结晶物质[9]。其生成的温度条件为0~10 ℃,超过20 ℃便会分解;在0 ℃条件下,压力达到3.0 MPa就可生成。海底温度一般在2~4 ℃,水深300 m处的压力可以达到3.0 MPa,并且压力越高,天然气水合物越不容易分解,因此深海环境适合天然气水合物的生成和保存。
天然气水合物依赖巨厚海水层的压力来维持其固体状态,其分布范围为海底到海底之下 1000 m以浅;深度继续增大后,由于地层温度升高,其固体状态遭到破坏而难以存在。南海北部海域海底沉积层的主要成分为黏土,夹杂少量细砂、粉砂,表层沉积物为淤泥质黏土,类冰状天然气水合物赋存在沉积层中,在海底水压作用下与未成岩的沉积层结合在一起呈固体状态;但一旦被扰动,取出到海面,因为压力降低会迅速分解,所以采用常规取样方式获取天然气水合物样品十分困难,需要在保温保压条件下才能取到。2017年进行天然气水合物取样时海水深度1310 m,取样层位在泥线以下100~123 m,取得的保压样品为泥质粉砂。
2. 取样工艺现状
由于天然气水合物赋存于深海,采用钻井平台取样,作业成本太高,因此一般采用钻探船取样。虽然钻探船的作业成本较低,运动比较灵活,但受海洋环境影响很大,而且不能像钻井平台一样下入隔水管和固定井口,钻井液无法形成循环体系,只能采用钻杆在海底浅层进行裸眼作业。这也导致不能采用常规起钻方式进行取样作业,因为一旦起钻,在深海要再找到井口将非常困难,只能将钻杆做为取样通道进行快速取样。
2017年,天然气水合物取样采用的海洋石油708深水工程勘察船,除了具有动力定位、主动和被动深度补偿装置外,为保障取样作业顺利完成,还在海底下放了海底基座,取样过程中能够抱住钻杆,尽量减少对地层的扰动。由于受勘察船尺寸和井架高度的限制,钻进时只能进行接单根作业,采用了ϕ127.0 mm钻杆,钻具组合内径不小于ϕ104.7 mm,井架有效高度36.00 m,井架前大门高度12.50 m,大钩最大工作载荷2 250 kN。
3. 取样工具现状
由于天然气水合物的特殊性和不起钻的作业方式,只能采用绳索保温保压取样方式,即取样工具从钻杆内部下入到井底,完成取样后,利用与绞车绳索连接的特殊打捞工具将取样工具提出井口,获得保温保压样品,然后快速循环该作业过程,实现连续取样。
3.1 工具尺寸
为适应海洋石油708深水工程勘察船的钻具尺寸,取样工具外径最大只能设计为101.0 mm;受密封阀门通径限制,为满足后期分析样品的要求,目前取心直径最大能够达到52.0 mm。
3.2 低温保温方式
低温保温方式有很多种,主要目的是阻断对流、传导和辐射这3种形式的传热。取样工具研发过程中,重点研究了真空被动保温、半导体制冷主动保温和填充隔热材料被动保温等3种方案,3种保温方案各有利弊。
1)真空被动保温是把保温保压筒做成双层,两层之间抽真空,切断热传导;保温保压筒外采用等离子喷涂隔热涂层(如图1所示)。保温保压筒为密封状态,可以避免热对流;太阳光隔热涂料将保温保压筒外部辐射的热能反射回去,以防止外面的热能辐射到筒内。检测结果表明,隔热涂层对太阳光热量的反射、阻隔效果非常明显,能反射太阳光线一半以上的红外线,一般情况下,喷涂隔热涂层的物体表面温度与未喷涂隔热涂层相比低10~20 ℃。试制的保温保压筒真空夹层厚2.0 mm,真空度达0.08 MPa,涂层厚0.5 mm,能保持温度尽量不变。真空被动保温的低温保温效果较好,但工艺复杂,加工难度大,且保温筒两端接头无法隔热,不可避免地会影响保温效果[10]。
2)半导体制冷主动保温是利用半导体材料的Peltier效应,在直流电通过2种不同半导体材料串联成的电偶时,电偶的两端可分别吸收热量和放出热量,可以通过改变电流大小和半导体材料N、P的元件对数控制吸热量和放热量,实现制冷的目的。制冷片内部是由上百对电偶组成的热电堆,以达到增强制冷的效果。低温保温筒就是将多组制冷片的制冷端固定在筒壁上,用蓄电池供电,使保温筒内保持低温。虽然主动制冷可以使保温筒内保持低温,且不受两端接头的影响,但制冷片的放热端要及时散热,需要增大制冷片两端温差;另外,制冷片和电池组占用了取样工具的很大空间,设计难度很大[10]。
3)填充隔热复合材料被动保温是在双层筒内填充二氧化硅气凝胶,该凝胶是一种防热隔热性能非常优秀的轻质纳米多孔非晶固体材料,孔隙率达80.0%~99.8%,孔洞的典型直径1~100 nm,比表面积200~1000 m2/g,密度可低至3.0 kg/m3。二氧化硅气凝胶的导热系数极低,比相应的无机绝缘材料低2~3个数量级,达到0.013~0.016 W/(m·K),低于静态空气的导热系数(0.024 W/(m·K))。采用该低温保温方式,保温材料和工具的结构都简单,其与外管喷涂隔热涂层配合。室内试验表明,在采用该低温保温方式的保温筒内装入模拟冰块,在室温(20 ℃)下,放置2.5 h后保温筒内仍有大量冰块,完全满足取样后样品从海底到甲板再进入带压转移仓所需的时间。因此,2017年天然气水合物取样使用的工具都采用该低温保温方式[10]。
3.3 密封阀
密封阀是取样工具的关键部件,关系着天然气水合物取样的成败。保温保压取样工具采用绳索取样方式,取样工具外径受钻柱内径的限制,因此增大取样直径主要就是增大密封阀的通径。目前,能够用于取样工具的密封阀主要有球阀和板阀。球阀由于有预紧力,密封性较好,但需要能使密封球旋转90°的联动结构,不论是齿轮齿条结构,还是能够与密封球产生力矩的结构,都需要较大的径向空间。板阀的活动零件只有一个密封板,结构简单相对,占用的空间也小,但没有预紧力,初始密封性较差。为增大密封保压成功率,并使取样岩心的直径尽可能较大,设计了不同结构的球阀和板阀,通过改变结构增大密封阀的通径。
3.3.1 球阀
设计了2种结构的球阀。第1种结构的球阀在上提取样管到位后,触发电控机构释放带压液体,推动齿条带动密封球轴线上的齿轮旋转90°,形成密封(见图2)。在胜利六号钻井平台泥线下38.60 m处进行了密封试验,初始压力为4.248 MPa,16.5 h后压力为4.217 MPa,仅降低了0.031 MPa,表明其密封性很好,但取样直径仅为30.0 mm[10]。
第2种结构的球阀为了增大密封球的密封通径,将推动密封球旋转的机构放在轴心线侧面,机械结构触发后,靠二者间的力矩使密封球旋转90°形成密封。该结构的球阀还处于试验阶段。
3.3.2 板阀
板阀按照结构可分为直板式密封板阀、弯月式密封板阀和相贯线式密封板阀。直板式密封板阀的板是平面板,密封面也是平面,这种板阀易加工,但通径受空间限制难以增大。弯月式密封板阀的板与工具同轴,密封面是空间锥面,虽然增大了通径,但密封圈槽难以加工,试制了几种样品,密封效果都不佳。相贯线式密封板阀的板也与工具同轴,密封面是空间曲面,虽然加工难度大,但密封圈槽能够加工(见图3)。设计的相贯线式密封板阀外径为95.0 mm,通径为60.0 mm。
相贯线式密封板阀室内密封性能试验表明,其密封效果较好,低压0.5 MPa就可以密封,压力最高测试到30.0 MPa,保持30 min后压力未降低[8]。
3.4 取样作业方式
天然气水合物取样属于深水浅层绳索取样,取样层位多为弱胶结地层,所以作业时要尽量减小对样品的扰动。对于海底淤泥质土、黏土和松散—稍密的粉土与砂土,目前主要的取样方式是靠液压匀速压入地层,这种方式对样品扰动最小,取样质量最好,可以获取无干扰的沉积物样品,但由于地层强度逐渐增大,使用范围有限[11]。坚硬的黏土、较致密的砂土和弱胶结土也是天然气水合物赋存较多的地层,这些地层可以采用液力驱动的井底冲击器、高频冲击薄壁取样管进入地层的方式(见图4),既能避免旋转取样对天然气水合物样品的扰动,又能提供较大的推动力破碎地层,而且可以用于绳索取心,因此,天然气水合物取样时使用的较多[12]。对于非常坚硬的黏土、成岩地层,可以采用旋转取样的方式,旋转取样可以靠钻杆带动取样工具旋转[13],也可以不旋转钻杆,靠井下螺杆钻具带动取样工具旋转,虽然旋转会对样品有扰动,但由于地层坚硬,影响较小。
4. 技术发展建议
2017年,海洋石油708深水工程勘察船在南海北部采用绳索提取、隔热复合材料被动保温、相贯线式密封板阀保压和液力驱动井底冲击器高频冲击取样技术,成功取得了天然气水合物样品。笔者在分析天然气水合物钻探取样技术研发中遇到的技术难点的基础上,综合考虑现有技术,提出了今后的研究方向,为技术改进和后续技术研究提供参考。
1)优选适合制造天然气水合物取样工具的材料,进一步改进工具的结构,增大绳索取心工具的取样直径,提高密封阀的初始密封性能,研发取样工具与后处理设备快速对接的配套装置,提高现有工具对地层的适应性,简化操作步骤,实现过程电动化,降低作业风险。
2)研发新保温保压技术,如注入冷冻剂提高样品的保温效果,降低温度对样品的影响,冰冻底部样品形成冰阀,实现密封保压。
3)进一步研发适用于天然气水合物样品检测的各种声、电和光学测量仪器,以测试水合物样品的组成、密度、孔隙率、渗透率和热传导性等参数,建立现场样品检测综合实验室。
5. 结束语
天然气水合物钻探取样技术的创新发展,使我国在天然气水合物这一海洋新能源领域实现了自主勘探开发,形成的技术和装备除了用于海底天然气水合物资源勘探外,还可以用于海洋石油地质勘探、海底固体矿产资源勘探、海洋环境及海洋生物科学研究等。今后,在完善现有天然气水合物钻探取样技术装备的基础上,配套现场样品检测综合实验室,将进一步提高天然气水合物钻探取样技术水平,增强我国海底天然气水合物的勘探能力,满足和支撑国家海洋高科技事业发展的需求。
-
表 1 3口水平井现场试验数据
Table 1 Field test data from 3 horizontal wells
井号 井深/
m水平段长/
m机械钻速/
(m·h–1)钻井周期/
d钻速提高
效果,%试验1井 4 735 2 150 19.34 35.25 56.22 试验2井 4 623 1 820 18.65 34.23 50.65 试验3井 4 715 2 140 19.10 36.21 54.28 -
[1] 王敏生,光新军,耿黎东. 页岩油高效开发钻井完井关键技术及发展方向[J]. 石油钻探技术,2019,47(5):1–10. WANG Minsheng, GUANG Xinjun, GENG Lidong. Key drilling/completion technologies and development trends in the efficient development of shale oil[J]. Petroleum Drilling Techniques, 2019, 47(5): 1–10.
[2] 孙焕泉,蔡勋育,周德华,等. 中国石化页岩油勘探实践与展望[J]. 中国石油勘探,2019,24(5):569–575. doi: 10.3969/j.issn.1672-7703.2019.05.004 SUN Huanquan, CAI Xunyu, ZHOU Dehua, et al. Practice and prospect of Sinopec shale oil exploration[J]. China Petroleum Exploration, 2019, 24(5): 569–575. doi: 10.3969/j.issn.1672-7703.2019.05.004
[3] 张锦宏. 中国石化页岩油工程技术现状与发展展望[J]. 石油钻探技术,2021,49(4):8–13. doi: 10.11911/syztjs.2021072 ZHANG Jinhong. Present status and development prospects of Sinopec shale oil engineering technologies[J]. Petroleum Drilling Techniques, 2021, 49(4): 8–13. doi: 10.11911/syztjs.2021072
[4] 杜金虎,胡素云,庞正炼,等. 中国陆相页岩油类型、潜力及前景[J]. 中国石油勘探,2019,24(5):560–568. doi: 10.3969/j.issn.1672-7703.2019.05.003 DU Jinhu, HU Suyun, PANG Zhenglian, et al. The types, potentials and prospects of continental shale oil in China[J]. China Petroleum Exploration, 2019, 24(5): 560–568. doi: 10.3969/j.issn.1672-7703.2019.05.003
[5] 侯启军,何海清,李建忠,等. 中国石油天然气股份有限公司近期油气勘探进展及前景展望[J]. 中国石油勘探,2018,23(1):1–13. doi: 10.3969/j.issn.1672-7703.2018.01.001 HOU Qijun, HE Haiqing, LI Jianzhong, et al. Recent progress and prospect of oil and gas exploration by PetroChina Company Limited[J]. China Petroleum Exploration, 2018, 23(1): 1–13. doi: 10.3969/j.issn.1672-7703.2018.01.001
[6] 张瀚之,翟晓鹏,楼一珊. 中国陆相页岩油钻井技术发展现状与前景展望[J]. 石油钻采工艺,2019,41(3):265–271. ZHANG Hanzhi, ZHAI Xiaopeng, LOU Yishan. Development status and prospect of the drilling technologies used for continental shale oil reservoirs in China[J]. Oil Drilling & Production Technology, 2019, 41(3): 265–271.
[7] 雷浩,何建华,胡振国. 潜江凹陷页岩油藏渗流特征物理模拟及影响因素分析[J]. 特种油气藏,2019,26(3):94–98. doi: 10.3969/j.issn.1006-6535.2019.03.017 LEI Hao, HE Jianhua, HU Zhenguo. Physical simulation and influencing factor analysis of the flow characteristics in the shale oil reservoir of Qianjiang Depression[J]. Special Oil & Gas Reservoirs, 2019, 26(3): 94–98. doi: 10.3969/j.issn.1006-6535.2019.03.017
[8] 王静,张军华,谭明友,等. 砂砾岩致密油藏地震预测技术综述[J]. 特种油气藏,2019,26(1):7–11. WANG Jing, ZHANG Junhua, TAN Mingyou, et al. Seismic prediction review for glutenite tight oil reservoir[J]. Special Oil & Gas Reservoirs, 2019, 26(1): 7–11.
[9] 王建龙,齐昌利,陈鹏,等. 长水平段水平井高效钻井关键技术研究[J]. 石油化工应用,2018,37(3):95–97, 102. doi: 10.3969/j.issn.1673-5285.2018.03.021 WANG Jianlong, QI Changli, CHEN Peng, et al. Research and application of key techniques for horizontal well drilling in long horizontal section oilfield[J]. Petrochemical Industry Application, 2018, 37(3): 95–97, 102. doi: 10.3969/j.issn.1673-5285.2018.03.021
[10] 杨灿,王鹏,饶开波,等. 大港油田页岩油水平井钻井关键技术[J]. 石油钻探技术,2020,48(2):34–41. doi: 10.11911/syztjs.2020036 YANG Can, WANG Peng, RAO Kaibo, et al. Key technologies for drilling horizontal shale oil wells in the Dagang Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(2): 34–41. doi: 10.11911/syztjs.2020036
[11] 赵波,陈二丁. 胜利油田页岩油水平井樊页平1井钻井技术[J]. 石油钻探技术,2021,49(4):53–58. doi: 10.11911/syztjs.2021078 ZHAO Bo, CHEN Erding. Drilling technologies for horizontal shale oil well Fan Yeping 1 in the Shengli Oilfield[J]. Petroleum Drilling Techniques, 2021, 49(4): 53–58. doi: 10.11911/syztjs.2021078
[12] 席传明,史玉才,张楠,等. 吉木萨尔页岩油水平井JHW00421井钻完井关键技术[J]. 石油钻采工艺,2020,42(6):673–678. XI Chuanming, SHI Yucai, ZHANG Nan, et al. Key technologies for the drilling and completion of shale oil horizontal well JHW00421 in Jimusaer[J]. Oil Drilling & Production Technology, 2020, 42(6): 673–678.
[13] 柳伟荣,倪华峰,王学枫,等. 长庆油田陇东地区页岩油超长水平段水平井钻井技术[J]. 石油钻探技术,2020,48(1):9–14. doi: 10.11911/syztjs.2020029 LIU Weirong, NI Huafeng, WANG Xuefeng, et al. Shale oil horizontal drilling technology with super-long horizontal laterals in the Longdong Region of the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(1): 9–14. doi: 10.11911/syztjs.2020029
[14] 郑锋,王建龙,吴欣袁,等. 大斜度井岩屑床分析及新型井眼清洁工具应用[J]. 石油矿场机械,2018,47(1):80–82. ZHENG Feng, WANG Jianlong, WU Xinyuan, et al. Analysis of cuttings bed in highly deviated well and application of new hole cleaning tools[J]. Oil Field Equipment, 2018, 47(1): 80–82.
[15] 余长柏,黎明,刘洋,等. 水力振荡器振动特性的影响因素[J]. 断块油气田,2016,23(6):842–845, 850. YU Changbai, LI Ming, LIU Yang, et al. Influence factors on vibration characteristics of hydraulic oscillator[J]. Fault-Block Oil & Gas Field, 2016, 23(6): 842–845, 850.
[16] 李建亭,胡金建,罗恒荣. 低压耗增强型水力振荡器的研制与现场试验[J]. 石油钻探技术,2022,50(1):71–75. doi: 10.11911/syztjs.2021137 LI Jianting, HU Jinjian, LUO Hengrong. Development and field tests of an enhanced hydraulic oscillator with low pressure loss[J]. Petroleum Drilling Techniques, 2022, 50(1): 71–75. doi: 10.11911/syztjs.2021137
-
期刊类型引用(2)
1. 笱顺超,杨顺智,王飞,刘俊,王斌,袁晓琪. 苏里格西区含水气藏识别方法研究. 内蒙古石油化工. 2024(07): 102-105+116 . 百度学术
2. 刘昊年,刘成川,黎华继,马增彪. 川西坳陷东坡低电阻率储层特征及主控因素. 天然气技术与经济. 2017(06): 1-3+8+81 . 百度学术
其他类型引用(0)