顺北油田S井超深超高温碳酸盐岩断溶体油藏大型酸压关键技术

李新勇, 李骁, 赵兵, 王琨, 苟波

李新勇, 李骁, 赵兵, 王琨, 苟波. 顺北油田S井超深超高温碳酸盐岩断溶体油藏大型酸压关键技术[J]. 石油钻探技术, 2022, 50(2): 92-98. DOI: 10.11911/syztjs.2021068
引用本文: 李新勇, 李骁, 赵兵, 王琨, 苟波. 顺北油田S井超深超高温碳酸盐岩断溶体油藏大型酸压关键技术[J]. 石油钻探技术, 2022, 50(2): 92-98. DOI: 10.11911/syztjs.2021068
LI Xinyong, LI Xiao, ZHAO Bing, WANG Kun, GOU Bo. Key Technologies for Large-Scale Acid Fracturing of Ultra-Deep Fault-Karst Carbonate Reservoirs with Ultra-High Temperature for Well S in Shunbei Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(2): 92-98. DOI: 10.11911/syztjs.2021068
Citation: LI Xinyong, LI Xiao, ZHAO Bing, WANG Kun, GOU Bo. Key Technologies for Large-Scale Acid Fracturing of Ultra-Deep Fault-Karst Carbonate Reservoirs with Ultra-High Temperature for Well S in Shunbei Oilfield[J]. Petroleum Drilling Techniques, 2022, 50(2): 92-98. DOI: 10.11911/syztjs.2021068

顺北油田S井超深超高温碳酸盐岩断溶体油藏大型酸压关键技术

基金项目: 中国石化科技攻关项目“顺北超深断溶体油藏高效酸压技术研究”(编号:P20064-3)资助
详细信息
    作者简介:

    李新勇(1972—),男,新疆乌鲁木齐人,1997年毕业于西南石油学院采油工程专业,高级工程师,主要从事油气开采、储层改造方面的研究与管理工作。E-mail:lixinyong.xbsj@sinopec.com

    通讯作者:

    李骁,E-mail: 279834235@qq.com

  • 中图分类号: TE35

Key Technologies for Large-Scale Acid Fracturing of Ultra-Deep Fault-Karst Carbonate Reservoirs with Ultra-High Temperature for Well S in Shunbei Oilfield

  • 摘要: 顺北油田S井目的层属于典型的超深超高温断溶体储层,工程地质条件和井筒条件复杂,酸压改造面临巨大挑战。针对上述酸压改造难点,提出了“回填井段集中改造+酸损伤降破+管柱浅下+加重压裂液组合提排量+前置液造缝+交替注入造高导流裂缝+自生酸疏通远端断溶体”的复合酸压技术,通过试验优选了超高温工作液体系,包括180 ℃聚合物压裂液、160 ℃加重瓜胶压裂液、160 ℃交联酸和自生酸;基于数值模拟结果优化了大型酸压方案,推荐压裂液规模为1 800~2 200 m3,酸液规模为800~1 000 m3。现场试验表明,相同注液排量下,注加重压裂液的井口压力比注聚合物压裂液降低了7%,应用效果明显。S井大型酸压后,测试天然气产量10.45×104 m3/d,取得了顺北4号断裂带开发的突破,也为类似油气藏大型酸压方案优化设计提供了技术借鉴。
    Abstract: The target formation of Well S in Shunbei Oilfield is a typical ultra-deep fault-karst carbonate reservoir. Due to the complex engineering and geological conditions and wellbore conditions, acid fracturing is confronted with great challenges. In light of above difficulties in reservoir stimulation, a set of compound acid fracturing technologies was proposed by "centralized treatment by backfilling + acid damage to reduce fracture pressure + shallow pipe string + flow rate increase by weighted fracturing fluid + pad fluid fracturing + alternative injection for high conductivity fracture + autogenous acid to connect the far fault-karst". A set of acid fracturing fluid systems was optimized for resistance to ultra-high temperature by tests, included polymer fracturing fluid at 180 ℃, weighted guar gum fracturing fluid at 160 ℃, crosslinking acid at 160 ℃, and autogenous acid. Then, an optimized large-scale acid fracturing treatment plan was made based on recommendations for working fluid scales by numerical simulation. The recommended scale of fracturing fluid was 1 000–1 200 m3 and the scale of acid fluid was 800–1 000 m3. The field test showed a significant decrease in the wellhead pressure with weighted fracturing fluid, which was 7% lower than that with polymer fracturing fluid under the same injection rate. After the large-scale acid fracturing of Well S, the test production of natural gas was 10.45 × 104 m3/d, which made a breakthrough in the exploration of the Shunbei No. 4 fault zone and provided valuable guidance for the large-scale acid fracturing design of similar reservoirs.
  • 顺北油田顺托果勒低隆起以走滑断裂体系为主,沿走滑断裂发育大量非暴露岩溶缝洞型储层,此类由断裂带控制的油气储层简称为断溶体储层[1-3]。S井是位于顺托果勒低隆起顺北Ⅳ号断裂带奥陶系一间房组—鹰山组的一口重点风险探井,采用裸眼完井,完钻井深8 270.00 m,未直接钻遇断溶体。改造裸眼段井径120.7 mm,段长达493.00 m。目前国内碳酸盐岩储层温度普遍为120~160 ℃、井深4 000.00~7 000.00 m,主要采用深度酸压工艺进行储层改造[4-6]。通过深度酸压造缝,利用强导流能力的酸压长裂缝深度沟通多个断溶储集体、改善断裂带内储层连通性,是此类储层实现建产、增产的关键[7-9]。但S井断溶体储层埋深更深(8 270.00 m)、温度更高(182 ℃)、井筒条件更复杂、目标地质体刻画不清晰,深度酸压改造面临巨大挑战和风险,主要表现为储层难以压开、目标体精准改造难度大和远距离高导流酸压裂缝形成难度大,导致储层酸压改造后产量低且递减快,难以实现经济有效开发。为此,笔者在深入剖析储层地质特征、井筒条件和酸压改造技术难点的基础上,以长效连通断溶储集体、改善断裂带内连通性为目标,进行了管柱优化、工作液体系优选和酸压规模优化等方面技术研究,形成了S井大型酸压方案,S井顺利完成了酸压施工,取得了较好的增产效果。

    S井邻近主要发育F2、F3-1号断裂及1套强反射储集体,但与目的层段井眼距离较远,距F3-1号断裂370~390 m,距F2号断裂50~150 m,距强反射储集体180 m,钻井过程中未钻遇断裂带和有利储集体,目的层电阻率限幅特征明显,岩性较致密。一间房组7 841.00~7 868.50 m井段为相对有利储层段,7 841.00~7 842.00 m井段为Ⅱ类储层,仅发育单条或数条中高角度裂缝;7 844.00~7 868.50 m井段为Ⅲ类储层,伴有一定天然缝,但主要以诱导缝为主;鹰山组8 000.00~8 100.00 m和8 200.00~8 270.00 m井段有微小裂缝发育。储层裂缝发育程度较低,吸液能力有限[10-11]。7 777.00~7 900.00 m井段井眼不规则,无法判定主地应力方向;8 020.00~8 070.00 m与8 147.00~8 174.00 m井段的最大主应力方向为北西–南东向(见图1)。由于采用井眼崩落法预测最大水平主应力方向存在多解性[12-13],酸压裂缝能否沟通断溶体存在不确定性。同时,由于井斜角较大(18°)、井眼尺寸较小,存在钻具压迫一侧井壁形成椭圆井眼的可能。

    图  1  裂缝延伸方向与有利储集体展布方向相对位置
    Figure  1.  Relative orientation of the fracture extension direction and favorable reservoir distribution direction

    S井未直接钻遇断裂带和有利储集体,完钻后无自然产能。通过酸压改造形成高导流长裂缝,实现沟通断裂带或有利储集体是该井建产的核心技术,也是目前工程地质条件下较为经济可行的技术手段。但该井工程地质特征和井筒条件复杂,酸压改造面临如下技术难点:

    1)地层破裂压力高,采用常规压裂液体系难以直接压开地层和提升排量。储层深,裸眼段岩性致密,储层长时间(储层段钻井周期达172 d)受高密度钻井液(大于1.80 kg/L)浸泡、污染,吸液能力极低,导致破裂压力超高。测试压裂采用密度1.32 kg/L的盐水,最高排量2.0 m3/min,近井地层破裂,按照井口最高压力96 MPa计算地层破裂压力为183 MPa,破裂压力梯度为0.023 MPa/m。主体酸压过程中,密度1.0 kg/L的常规压裂液以2.0 m3/min排量注入,井口压力达122 MPa,超过井口限压。

    2)长裸眼段分段改造受限,目标体精准改造难度大。目标层油气储集体空间展布与应力场的匹配关系认识不清,造成酸压裂缝沟通方向、距离不明确;裸眼段长达493.00 m,存在多点进液、多点起裂的可能,会影响造长缝的效率,无法沟通远距离断溶体;受井筒条件复杂、部分套管磨损严重、地质条件严苛和施工风险较高等因素影响,现有机械分段酸压、连续油管水力喷射分段酸压等“硬分层”酸压技术[14-15],以及纤维+颗粒复合暂堵转向“软分层”酸压技术[16-17]均无法有效实施。

    3)远距离高导流裂缝造缝难度大。S井储层埋藏深,破裂压力高,难以压开,裂缝延伸压力大。同时,套管长期磨损,壁面承压受限,大排量注液将增加井底与环空压差,封隔器存在解封风险。受储层温度超高与裂缝较窄的双重影响,酸岩反应速率快,酸液有效作用距离短。储层埋藏深,闭合压力较高,高闭合压力下导流能力低且保持困难,难以实现酸压裂缝长期有效沟通。此外,高温压裂液、酸液等工作液也需要具有较好的耐温性能。

    针对上述技术难点,在现有工程技术条件下,为实现S井安全高效酸压,制定了如下措施:

    1)压开储层,建立施工排量。首先低排量注入滑溜水,将高密度完井液挤入地层,降低井筒温度,防止酸液在高温下对施工管柱的快速腐蚀,保障施工安全;随后采用酸损伤技术[18-19],注入低黏酸液,溶蚀近井钻井液污染带,增加地层吸液能力,降低破裂压力;待排量充分建立后,依次注入加重压裂液、超高温压裂液,压开地层造长缝。

    2)集中改造有利储层段,提高液体造长缝效率。储层最大水平主应力方向为北西–南东向,与有利储集体展布方向基本匹配,具备精准沟通储集体的可行性(见图1)。为克服酸压沟通储集体的不确定性,缩短改造井段,集中高强度改造有利井段。采用水泥回填,封堵下部7 950.00~8 270.00 m井段,对上部7 777.00~7 950.00 m井段(裸眼段缩短至173.00 m)进行大规模、大排量酸压改造,确保有利储层段(7 841.00~7 868.5.00m)集中进液造长缝,提高液体造缝效率。

    3)优化液体性能、组合及规模,最大化沟通远井储集体。优选顺北区块成熟耐高温酸液、压裂液体系,保证施工安全有效。造缝阶段采用加重压裂液+压裂液+滑溜水的前置液组合,加重压裂液有利于提升施工排量,压裂液、滑溜水可降温、降滤,有利于形成深穿透水力裂缝,沟通储集体。酸刻蚀阶段采用压裂液+交联酸、压裂液+自生酸+交联酸基液两级组合注入模式,利用压裂液降滤,增加酸液有效作用距离,改善酸蚀裂缝导流能力;自生酸具有随温度升高生酸的特性,可疏通位于裂缝远端的断溶体内部缝洞网络,改善流体在断溶体内部的渗流能力,最终形成连接井筒和储集体的高导流通道。利用现有酸压模型,基于液体性能、沟通目标距离优化注液规模,充分发挥液体性能。

    3.2.1.1 超高温压裂液体系

    压开地层时,考虑前期滑溜水和酸液对地层的降温效应,优选耐160 ℃加重压裂液体系,其配方为0.55%超级胍胶BFC-10+0.30%pH调节剂+0.50%硫代硫酸钠+0.50%高温助排剂BZP-3+0.50%破乳剂BZP-07+0.40%交联剂GC-18+14.00%NaCl。加重压裂液密度1.10 kg/L,在160 ℃、170 s–1条件下剪切140 min后,黏度保持在100 mPa·s以上(见图2);在酸化后的低黏酸(密度1.00 kg/L)中注入加重压裂液,密度差异可引起静液柱压力差异,预计施工压力可降低7.8 MPa。

    图  2  不同压裂液的流变性能
    Figure  2.  Rheological properties of different fracturing fluids

    裂缝延伸时,考虑深部地层温度仍高达182 ℃,优选温控交联聚合物压裂液体系,延长压裂液在井筒中的交联时间,降低泵送难度,其配方为0.6%聚合物稠化剂BFC-200+1.0%高温助排剂BZP-3+0.5%高温破乳剂BZP-07+1.2%耐温增强剂JX-HT+0.25%破胶剂NOB-100+1.2%交联剂JX-JL-1。流变测试结果表明, 180 ℃、170 s–1条件下剪切140 min,压裂液体系交联前黏度保持在40~50 mPa·s,温度达80~90 ℃后开始交联,交联后黏度保持在50~130 mPa·s,满足高温造缝要求(见图2)。

    3.2.1.2 超高温交联酸体系

    选用耐超高温交联酸体系,其配方为20%HCl+0.8%稠化剂ECA-1+3.2%缓蚀剂EEH-180+0.8%缓蚀增效剂EEH-ZX+1.0%铁离子稳定剂EET+1.0%破乳剂EEP+交联剂ECC-180(交联比为100∶2)+0.02%破胶剂EAB。加入交联剂后52 s交联完成,基液黏度63 mPa·s,延迟交联性能好,利于泵送;160 ℃、170 s–1条件下剪切70 min,酸液体系最低黏度为53 mPa·s,耐温耐剪切性能较好(见图3);采用P110(S)钢片,测定160 ℃、60 r/min条件下酸液体系4 h的平均动态腐蚀速率为13.62 g/(m2·h),钢片上仅有细小点蚀,可确保酸压过程中的管柱安全。

    图  3  交联酸体系的流变性能
    Figure  3.  Rheological property of the crosslinking acid system

    3.2.1.3 缓速自生酸体系

    为改造裂缝远端断溶储集体,选择了生酸及缓速性能较好的自生酸体系,其配方为49.25%A剂+49.25%B剂+0.5%高温缓蚀剂+0.5%铁离子稳定剂+0.5%破乳剂。试验结果表明,酸浓度随温度升高逐渐增加,最高可达15%(见图4);4种酸液体系经长时间酸岩反应后,120~240 min内自生酸体系的酸浓度较高,有利于裂缝远端储层的溶蚀改造(见图5)。

    图  4  不同反应时间下自生酸浓度和反应温度的关系
    Figure  4.  Relation of concentration of autogenous acid and reaction temperature at different reaction times
    图  5  酸岩反应过程中酸浓度和反应时间的关系
    Figure  5.  Relation of acid concentration and reaction time during acid rock reaction

    结合现有压裂软件和酸压模型[20],模拟不同酸压规模下的酸压裂缝长度,推荐酸压规模。

    采用软件模拟不同注液排量、总注液规模对酸压动态裂缝长度的影响。模拟结果表明,3种注液排量下,随液体规模增加,酸压动态裂缝缝长均有一定程度增加,液量大于3 000 m3时,裂缝长度增长幅度减小,推荐总注液规模3 000~3 500 m3。同时,注液规模不变,排量提升,酸压裂缝长度明显增加。因此,在考虑施工限压条件下,最大化提升注液排量,有利于裂缝延伸沟通远距离断溶体(见图6)。

    图  6  不同注酸排量下动态缝长与注液量的关系
    Figure  6.  Relation of dynamic fracture length and injection volume under different injection rates

    S井所处储层温度高达180 ℃,需采取合适的降温措施,延缓酸岩反应速率,考虑酸岩反应对裂缝温度影响,模拟裂缝温度场[21],分析前置液降温效果,推荐前置液规模(见图7)。当注液规模大于1 000 m3后,前置液对裂缝的降温效果逐渐减缓,因此,推荐前置液规模1 000~1 200 m3

    图  7  前置液规模对裂缝温度场的影响
    Figure  7.  Influence of pad fluid scale on temperature field of fracture

    为形成高导流能力的长缝,交替注入压裂液、交联酸及自生酸,采用酸压模型模拟酸液有效作用距离,根据模拟结果推荐3种液体的规模。交联酸总规模达800 m3以后,酸液有效作用距离增长放缓,推荐交联酸注酸规模为800~1 000 m3(见图8)。借鉴顺北1、5号断裂酸压改造经验,以体积比1∶1二级交替注入压裂液与交联酸,压裂液规模为800~1 000 m3。自生酸对酸液有效作用距离提升有一定作用,自生酸规模大于200 m3后,酸液有效作用距离超过150 m,且增加速度逐渐放缓,因此,建议自生酸规模200~400 m3(见图9)。

    图  8  交联酸规模对酸液有效作用距离的影响
    Figure  8.  Influence of crosslinking acid scale on effective distance of acid
    图  9  自生酸规模对酸液有效作用距离的影响
    Figure  9.  Influence of autogenous acid scale on effective distance of acid

    S井采用根据上述酸压方案设计的参数进行大型酸压施工,施工排量0.5~8.0 m3/min,施工压力27.7~119.8 MPa,累计注入液量3 070 m3(其中滑溜水1 000 m3、压裂液700 m3、加重压裂液300 m3、交联酸830 m3、自生酸240 m3),停泵60 min,停泵压力82~78 MPa。大型酸压施工顺利实施,刷新了顺北特深井大型酸压改造纪录。结合施工全过程压力曲线,分析酸压实施效果(见图10)。

    图  10  S井大型酸压施工曲线
    Figure  10.  Fracturing curve for large-scale acid fracturing of Well S

    1)浅下管柱施工压力显著降低。实际浅下油管长度为6 900 m,比常规方式下入油管长度短770 m。5000~6900 m井段采用了ϕ88.9 mm油管,计算该油管柱在3~10 m3/min施工排量下的摩阻降低幅度,结果见表1。由表1可看出,采用浅下管柱摩阻降低2.4~11.5 MPa,且大排量注液条件下,浅下管柱降低摩阻的效果更为显著。

    表  1  不同注压裂液排量下浅下管柱摩阻减小值
    Table  1.  Friction reduction of shallow pipe string under different fracturing fluid injection rates
    排量/
    (m3·min-1
    ϕ88.9 mm油管摩阻系数/
    (MPa·m-1
    浅下管柱减小摩阻/
    MPa
    30.0032.4
    40.0053.8
    50.0075.3
    60.0086.2
    70.0139.9
    80.01511.5
    下载: 导出CSV 
    | 显示表格

    2)加重压裂液降低施工压力效果明显。加重压裂液可通过增大密度提高井筒液柱压力,在相同注液排量下,注加重压裂液时的井口压力与注聚合物压裂液相比低了7.8 MPa,降低了7%,降压力效果明显。

    3)交联酸溶蚀储层,有效降低了施工压力。施工初期泵入低黏交联酸基液,施工压力由114 MPa降至92 MPa,吸酸压力梯度由0.0219 MPa/m降至0.0190 MPa/m,表明酸损伤后地层吸液能力明显改善;此后施工排量维持在5.5~8.0 m3/min,排量提升效果明显;后续大排量注入工作液,施工压力维持在120 MPa限压以内,裂缝逐渐延伸;2次交联酸的注入均降低了施工压力,裂缝导流能力得到明显改善。

    4)自生酸溶蚀储层,实现远端储层沟通。正挤自生酸阶段,首先以6 m3/min排量顶替前阶段聚合物压裂液进入地层,10 min后自生酸开始接触地层;随后自生酸排量降低至5.5 m3/min,稳定排量注入8 min。18 min内施工压力由110 MPa增至116.4 MPa,自生酸推动压裂液延伸裂缝,此阶段自生酸反应能力较弱。自生酸与碳酸盐岩反应时间越长、反应温度越高,其酸浓度越高。以5.5 m3/min排量继续注入26 min后,由于自生酸具备了较强反应能力,岩石力学强度随之降低,施工压力降低13.7 MPa,促进了有利储集体的沟通,说明自生酸具有延迟反应功能,能够溶蚀并沟通远端储层。

    1)针对S井超深超高温断溶体储层大型酸压技术难点,以“回填井段集中改造+酸损伤降破+管柱浅下+加重压裂液组合提排量+前置液造缝+交替注入造高导流裂缝+自生酸疏通远端断溶体”为核心思路的复合酸压技术,可远距离沟通断溶体储层,并建立稳定导流能力。

    2)S井断溶体储层大型酸压的顺利实施,为顺北区块断溶体储层大型酸压积累了经验,但改造井段有待进一步缩短,以提高液体造长缝效率。

    3)超深断溶体储层空间展布与地应力方向认识尚未明确,应进一步研究并精细刻画目标地质体与地应力空间展布、井筒质量、酸压规模、施工参数和酸压材料等的匹配关系,实现有利储集体的精准、高效靶向改造。

  • 图  1   裂缝延伸方向与有利储集体展布方向相对位置

    Figure  1.   Relative orientation of the fracture extension direction and favorable reservoir distribution direction

    图  2   不同压裂液的流变性能

    Figure  2.   Rheological properties of different fracturing fluids

    图  3   交联酸体系的流变性能

    Figure  3.   Rheological property of the crosslinking acid system

    图  4   不同反应时间下自生酸浓度和反应温度的关系

    Figure  4.   Relation of concentration of autogenous acid and reaction temperature at different reaction times

    图  5   酸岩反应过程中酸浓度和反应时间的关系

    Figure  5.   Relation of acid concentration and reaction time during acid rock reaction

    图  6   不同注酸排量下动态缝长与注液量的关系

    Figure  6.   Relation of dynamic fracture length and injection volume under different injection rates

    图  7   前置液规模对裂缝温度场的影响

    Figure  7.   Influence of pad fluid scale on temperature field of fracture

    图  8   交联酸规模对酸液有效作用距离的影响

    Figure  8.   Influence of crosslinking acid scale on effective distance of acid

    图  9   自生酸规模对酸液有效作用距离的影响

    Figure  9.   Influence of autogenous acid scale on effective distance of acid

    图  10   S井大型酸压施工曲线

    Figure  10.   Fracturing curve for large-scale acid fracturing of Well S

    表  1   不同注压裂液排量下浅下管柱摩阻减小值

    Table  1   Friction reduction of shallow pipe string under different fracturing fluid injection rates

    排量/
    (m3·min-1
    ϕ88.9 mm油管摩阻系数/
    (MPa·m-1
    浅下管柱减小摩阻/
    MPa
    30.0032.4
    40.0053.8
    50.0075.3
    60.0086.2
    70.0139.9
    80.01511.5
    下载: 导出CSV
  • [1] 李映涛,漆立新,张哨楠,等. 塔里木盆地顺北地区中—下奥陶统断溶体储层特征及发育模式[J]. 石油学报,2019,40(12):1470–1484. doi: 10.7623/syxb201912006

    LI Yingtao, QI Lixin, ZHANG Shaonan, et al. Characteristics and development mode of the middle and lower Ordovician fault-karst reservoir in Shunbei Area, Tarim Basin[J]. Acta Petrolei Sinica, 2019, 40(12): 1470–1484. doi: 10.7623/syxb201912006

    [2] 鲁新便,胡文革,汪彦,等. 塔河地区碳酸盐岩断溶体油藏特征与开发实践[J]. 石油与天然气地质,2015,36(3):347–355. doi: 10.11743/ogg20150301

    LU Xinbian, HU Wenge, WANG Yan, et al. Characteristics and development practice of fault-Karst carbonate reservoirs in Tahe Area, Tarim Basin[J]. Oil & Gas Geology, 2015, 36(3): 347–355. doi: 10.11743/ogg20150301

    [3] 马庆佑,沙旭光,李玉兰,等. 塔中顺托果勒区块走滑断裂特征及控油作用[J]. 石油实验地质,2012,34(2):120–124. doi: 10.3969/j.issn.1001-6112.2012.02.003

    MA Qingyou, SHA Xuguang, LI Yulan, et al. Characteristics of strike-slip fault and its controlling on oil in Shuntuoguole Region, middle Tarim Basin[J]. Petroleum Geology and Experiment, 2012, 34(2): 120–124. doi: 10.3969/j.issn.1001-6112.2012.02.003

    [4] 李相文,冯许魁,刘永雷,等. 塔中地区奥陶系走滑断裂体系解剖及其控储控藏特征分析[J]. 石油物探,2018,57(5):764–774. doi: 10.3969/j.issn.1000-1441.2018.05.016

    LI Xiangwen, FENG Xukui, LIU Yonglei, et al. Characteristic of the strike-slip faults system and effect of faults on reservoir and hydrocarbon accumulation in Tazhong Area, China[J]. Geophysical Prospecting for Petroleum, 2018, 57(5): 764–774. doi: 10.3969/j.issn.1000-1441.2018.05.016

    [5] 刘洪涛,刘举,刘会锋,等. 塔里木盆地超深层油气藏试油与储层改造技术进展及发展方向[J]. 天然气工业,2020,40(11):76–88. doi: 10.3787/j.issn.1000-0976.2020.11.009

    LIU Hongtao, LIU Ju, LIU Huifeng, et al. Progress and development direction of production test and reservoir stimulation technologies for ultra-deep oil and gas reservoirs in Tarim Basin[J]. Natural Gas Industry, 2020, 40(11): 76–88. doi: 10.3787/j.issn.1000-0976.2020.11.009

    [6] 丁士东,赵向阳. 中国石化重点探区钻井完井技术新进展与发展建议[J]. 石油钻探技术,2020,48(4):11–20. doi: 10.11911/syztjs.2020069

    DING Shidong, ZHAO Xiangyang. New progress and development suggestions for drilling and completion technologies in Sinopec key exploration areas[J]. Petroleum Drilling Techniques, 2020, 48(4): 11–20. doi: 10.11911/syztjs.2020069

    [7] 方俊伟,董晓强,李雄,等. 顺北油田断溶体储集层特征及损害预防[J]. 新疆石油地质,2021,42(2):201–205.

    FANG Junwei, DONG Xiaoqiang, LI Xiong, et al. Characteristics and damage prevention of fault-karst reservoirs in Shunbei Oil-field[J]. Xinjiang Petroleum Geology, 2021, 42(2): 201–205.

    [8] 马乃拜,金圣林,杨瑞召,等. 塔里木盆地顺北地区断溶体地震反射特征与识别[J]. 石油地球物理勘探,2019,54(2):398–403.

    MA Naibai, JIN Shenglin, YANG Ruizhao, et al. Seismic response characteristics and identification of fault-karst reservoir in Shunbei Area, Tarim Basin[J]. Oil Geophysical Prospecting, 2019, 54(2): 398–403.

    [9] 李新勇,耿宇迪,刘志远,等. 缝洞型碳酸盐岩储层压裂效果评价方法试验研究[J]. 石油钻探技术,2020,48(6):88–93. doi: 10.11911/syztjs.2020074

    LI Xinyong, GENG Yudi, LIU Zhiyuan, et al. An experimental study on evaluation methods for fracturing effect of fractured-vuggy carbonate reservoir[J]. Petroleum Drilling Techniques, 2020, 48(6): 88–93. doi: 10.11911/syztjs.2020074

    [10] 张文彪,段太忠,李蒙,等. 塔河油田托甫台区奥陶系断溶体层级类型及表征方法[J]. 石油勘探与开发,2021,48(2):314–325.

    ZHANG Wenbiao, DUAN Taizhong, LI Meng, et al. Architecture characterization of Ordovician fault-controlled paleokarst carbonate reservoirs in Tuoputai, Tahe Oilfield, Tarim Basin, NW China[J]. Petroleum Exploration and Development, 2021, 48(2): 314–325.

    [11] 李冬梅,柳志翔,李林涛,等. 顺北超深断溶体油气藏完井技术[J]. 石油钻采工艺,2020,42(5):600–605.

    LI Dongmei, LIU Zhixiang, LI Lintao, et al. Well completion technologies for the ultra-deep fault-dissolved oil and gas reservoir in Shunbei Oil and Gas Field[J]. Oil Drilling & Production Technology, 2020, 42(5): 600–605.

    [12] 欧阳健,王贵文. 电测井地应力分析及评价[J]. 石油勘探与开发,2001,28(3):92–94. doi: 10.3321/j.issn:1000-0747.2001.03.028

    OUYANG Jian, WANG Guiwen. In-situ stress analysis and evaluation by using of electric logging[J]. Petroleum Exploration and Development, 2001, 28(3): 92–94. doi: 10.3321/j.issn:1000-0747.2001.03.028

    [13] 赵旭阳,郭海敏,李紫璇,等. 基于测井横波预测的地应力场及岩石力学参数建模[J]. 断块油气田,2021,28(2):235–240.

    ZHAO Xuyang, GUO Haimin, LI Zixuan, et al. Modeling of in-situ stress field and rock mechanics parameters based on logging shear wave prediction[J]. Fault-Block Oil & Gas Field, 2021, 28(2): 235–240.

    [14] 王洋,赵兵,袁清芸,等. 顺9井区致密油藏水平井一体化开发技术[J]. 石油钻探技术,2015,43(4):48–52.

    WANG Yang, ZHAO Bing, YUAN Qingyun, et al. Integrated techniques in tight reservoir development for horizontal wells in Block Shun 9[J]. Petroleum Drilling Techniques, 2015, 43(4): 48–52.

    [15] 曲海,李根生,刘营. 拖动式水力喷射分段压裂工艺在筛管水平井完井中的应用[J]. 石油钻探技术,2012,40(3):83–86. doi: 10.3969/j.issn.1001-0890.2012.03.017

    QU Hai, LI Gensheng, LIU Ying. The application of dragged multi-stage hydrojet-fracturing in horizontal well with screen pipe completion[J]. Petroleum Drilling Techniques, 2012, 40(3): 83–86. doi: 10.3969/j.issn.1001-0890.2012.03.017

    [16] 李春月,房好青,牟建业,等. 碳酸盐岩储层缝内暂堵转向压裂实验研究[J]. 石油钻探技术,2020,48(2):88–92. doi: 10.11911/syztjs.2020018

    LI Chunyue, FANG Haoqing, MOU Jianye, et al. Experimental study on temporary fracture plugging and diverting fracturing of carbonate reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(2): 88–92. doi: 10.11911/syztjs.2020018

    [17] 张雄,耿宇迪,焦克波,等. 塔河油田碳酸盐岩油藏水平井暂堵分段酸压技术[J]. 石油钻探技术,2016,44(4):82–87.

    ZHANG Xiong, GENG Yudi, JIAO Kebo, et al. The technology of multi-stage acid fracturing in horizontal well for carbonate reservoir by temporary plugging ways in the Tahe Oilfield[J]. Petroleum Drilling Techniques, 2016, 44(4): 82–87.

    [18] 曾凡辉,郭建春,赵金洲. 酸损伤降低砂岩储层破裂压力实验研究[J]. 西南石油大学学报(自然科学版),2009,31(6):93–96.

    ZENG Fanhui, GUO Jianchun, ZHAO Jinzhou. The experiment research of acid damage to reduce sandstone reservoirs fracture pressure[J]. Journal of Southwest Petroleum University(Science & Technology Edition), 2009, 31(6): 93–96.

    [19] 王松,邓宽海,于会永,等. 玛湖凹陷百口泉组砾岩储层泡酸后岩石损伤及压裂泵压下降机理[J]. 科学技术与工程,2021,21(21):8841–8850.

    WANG Song, DENG Kuanhai, YU Huiyong, et al. Rock damage and fracturing pump pressure reduction mechanism of conglomerate reservoirs in Baikouquan Formation of Mahu Sag after acidizing treatment[J]. Science Technology and Engineering, 2021, 21(21): 8841–8850.

    [20] 郭建春,苟波,秦楠,等. 深层碳酸盐岩储层改造理念的革新:立体酸压技术[J]. 天然气工业,2020,40(2):61–74. doi: 10.3787/j.issn.1000-0976.2020.02.007

    GUO Jianchun, GOU Bo, QIN Nan, et al. An innovative concept on deep carbonate reservoir stimulation: three-dimensional acid fracturing technology[J]. Natural Gas Industry, 2020, 40(2): 61–74. doi: 10.3787/j.issn.1000-0976.2020.02.007

    [21] 苏雄,杨明合,陈伟峰,等. 顺北一区小井眼超深井井筒温度场特征研究与应用[J]. 石油钻探技术,2021,49(3):67–74. doi: 10.11911/syztjs.2021006

    SU Xiong, YANG Minghe, CHEN Weifeng, et al. Study and application of wellbore temperature field characteristics in the ultra-deep slim-hole wells in the Shunbei No.1 Area[J]. Petroleum Drilling Techniques, 2021, 49(3): 67–74. doi: 10.11911/syztjs.2021006

  • 期刊类型引用(13)

    1. 刘承诚. 基于KPI的裸眼封隔器应用效能评价. 石油矿场机械. 2025(01): 19-23 . 百度学术
    2. 李冬梅,李会会,朱苏阳. 大尺度离散裂缝的渗透率应力敏感研究——以顺北油田为例. 断块油气田. 2024(01): 147-153 . 百度学术
    3. 柳志翔,邹伟,王冲,徐迎春. 新型超高温高压井裸眼封隔器研制与应用. 工程机械. 2024(04): 23-29+8 . 百度学术
    4. 丁士东,庞伟,周珺,杨德锴,何同. 顺北油气田超深井分段完井技术. 石油钻探技术. 2024(02): 66-71 . 本站查看
    5. 杨敏,鲍典,焦保雷,张娟,罗发强,罗攀登. 塔里木盆地顺北油气田少井高产地质工程一体化做法与关键技术. 中国石油勘探. 2024(03): 45-57 . 百度学术
    6. 刘永辉,吴宁,罗程程,周陈程,李楠,彭振华,代星,方正魁. 高气液比油井井筒压降实验及理论模型研究. 断块油气田. 2024(05): 893-899 . 百度学术
    7. 王龙,万小勇,林仁奎,李冬梅,徐燕东,朱苏阳. 断控型缝洞气藏酸压规模与无阻流量的关系研究. 钻采工艺. 2024(05): 172-178 . 百度学术
    8. 蔡计光,王川,房好青,苟波,王琨,任冀川. 全缝长酸蚀填砂裂缝导流能力评价方法. 石油钻探技术. 2023(01): 78-85 . 本站查看
    9. 唐雨. HIMA高温胶凝酸体系研制及现场应用. 江汉石油职工大学学报. 2023(01): 14-16+20 . 百度学术
    10. 戴一凡,侯冰. 碳酸盐岩酸蚀裂缝面粗糙度与导流能力相关性分析. 断块油气田. 2023(04): 672-677 . 百度学术
    11. 李长海,赵伦,朱强,李云海,马彩琴,李晓胜,杨坤,张丽英. 酸压技术研究现状及发展趋势. 油气地质与采收率. 2023(06): 138-149 . 百度学术
    12. 纪成,赵兵,李建斌,罗攀登,房好青. 温度响应地下自生成支撑剂研究. 石油钻探技术. 2022(04): 45-51 . 本站查看
    13. 郭玉洁,徐创伟,张江江,李芳,孟晓宇,谢思黔. 聚全氟乙丙烯耐高温非金属内衬油管的服役工况适应性. 工程塑料应用. 2022(11): 133-138 . 百度学术

    其他类型引用(1)

图(10)  /  表(1)
计量
  • 文章访问数:  482
  • HTML全文浏览量:  223
  • PDF下载量:  76
  • 被引次数: 14
出版历程
  • 收稿日期:  2020-12-20
  • 修回日期:  2021-09-12
  • 录用日期:  2021-11-10
  • 网络出版日期:  2021-11-16
  • 刊出日期:  2022-04-05

目录

/

返回文章
返回