Triaxial Mechanical Tests and Multiple Regression Strength Analysis of Simalted Frozen Soil Sample from Mohe
-
摘要: 在冻土地层钻探过程中,不合理的作业方案可能引发井壁坍塌、井口沉降等一系列工程问题,而弄清深层冻土力学演化规律是施工设计的基础。为此,用漠河冻土重塑了不同深度冻土的模拟岩样,开展了不同围压、温度条件下的冻土三轴力学试验,分析了不同条件下的冻土应力–应变曲线特征。通过多元回归方法对冻土强度进行了统计分析,进一步构建了冻土强度准则。研究发现:模拟岩样的应力–应变曲线整体呈非线性变形特征,在冻结状态下,温度、围压对土体强度起主要作用;非冻结状态下,其强度由围压和土体深度决定;冻土强度由土体骨架强度和孔隙中冰的胶结强度构成,其骨架强度满足Mohr-Coulomb强度准则,内聚力、内摩擦角随深度增加而增大;孔隙中冰的胶结强度随环境温度降低而增强,随围压增加呈先增强后减弱的趋势。基于此构建了漠河冻土强度准则,验证结果表明,可以较好地表征漠河冻土融化–冻结状态下的强度分布。Abstract: Improper drilling schemes may cause engineering problems such as wellbore collapse and wellhead subsidence during the drilling of permafrost. The research on mechanical evolution of deep frozen soil paves the way for construction design. In this paper, soil samples at different depths were remolded with the frozen soil from Mohe, and triaxial mechanical tests were carried out under different confining pressures and temperatures to analyze the characteristics of stress–strain curves of frozen soil under different conditions. The strength of frozen soil was statistically studied by multiple regression analysis, and the strength criterion for it was further established. The research results showed that the stress–strain curves of the frozen soil samples presented nonlinear deformation behavior on the whole. In its frozen state, soil strength was controlled mainly by temperature and confining pressure while it was dominated by confining pressure and soil depth in its non-frozen state. In addition, frozen soil strength was composed of the strength of soil skeleton and the cementing strength of ice in pores. The strength of soil skeleton satisfies the Mohr-Coulomb criteria, and the cohesion and internal friction angle increases with soil depth. The cementing strength of ice in pores grows with the decline of ambient temperature, and increases and then decreases as the confining pressure increases. On this basis, the strength criterion for Mohe frozen soil was established, and the verification results proved that it can well characterize the strength distribution of Mohe frozen soil in the melt and frozen state.
-
-
表 1 模拟不同深度冻土的压制力及所得岩样的基础参数
Table 1 Simulation of compression pressure on frozen soil at different depths and corresponding basic sample parameters
地层深度/m 压制力/kN 孔隙度,% 含水率,% 含水饱和度,% 50.00 0.480 35.8 19.5 98.85 300.00 2.885 34.3 18.8 95.90 600.00 5.770 33.6 18.3 96.64 800.00 7.693 33.0 17.5 95.14 1 000.00 9.616 32.3 17.2 96.43 表 2 漠河冻土三轴力学试验方案
Table 2 Triaxial mechanical test protocol of Mohe frozen soil
地层深度/m 温度/℃ 围压/MPa 50.00 20/–5/–10/–15/–25 0/1/3 300.00 20/–5/–10/–15/–25 0/3/5 600.00 20/–5/–10/–15/–25 3/5/8 800.00 20/–5/–10/–15/–25 5/8/12 1 000.00 20/–5/–10/–15/–25 5/10/15 表 3 初次回归结果显著性分析结果
Table 3 Significance analysis of the initial regression results
因素 标准化系数 t值1) 显著性 截距 3.136 0.002 深度 –0.048 –0.594 0.554 温度 –0.379 –5.666 0 围压 0.744 9.246 0 注:1)指t检验中的t值,下同。 表 4 线性回归结果显著性分析结果
Table 4 Significance analysis of linear regression results
因素 标准化系数 t值 显著性 截距 3.280 0.002 温度 –0.379 –5.690 0 围压 0.718 10.780 0 表 5 漠河冻土非线性回归参数估算值
Table 5 Estimated values of nonlinear regression parameters of Mohe frozen soil
参数 估算值 标准误差 c1 1.534 0.092 c2 –0.092 0.101 c3 –0.412 0.004 c4 –0.009 0.006 c5 –0.016 0.003 f –0.187 0.645 表 6 漠河非冻结土非线性回归参数估算值
Table 6 Estimated values of nonlinear regression parameters in Mohe non-frozen soil
参数 估算值 标准误差 d1 0.001 0 d2 –4.186×10–7 0.031 d3 0.076 0 d4 –0.004 0 d5 0 0 f 0.911 0.087 -
[1] 肖东辉,马巍,赵淑萍,等. 冻土动力学参数研究的成果综述与展望[J]. 冰川冻土,2015,37(6):1611–1626. XIAO Donghui, MA Wei, ZHAO Shuping, et al. Study of the dynamic parameters of frozen soil: achievements and prospects[J]. Journal of Glaciology and Geocryology, 2015, 37(6): 1611–1626.
[2] 苏文德,周建军. 厦门地区含盐地层冻土力学性能试验研究[J]. 隧道建设,2016,36(1):27–31. doi: 10.3973/j.issn.1672-741X.2016.01.004 SU Wende, ZHOU Jianjun. Experimental study on mechanical properties of salt-bearing frozen soil in Xiamen, China[J]. Tunnel Construction, 2016, 36(1): 27–31. doi: 10.3973/j.issn.1672-741X.2016.01.004
[3] 王海新,吴亚平,孙安元,等. 循环荷载下冻土桩基力学特性研究[J]. 铁道科学与工程学报,2017,14(10):2111–2117. doi: 10.3969/j.issn.1672-7029.2017.10.011 WANG Haixin, WU Yaping, SUN Anyuan, et al. Mechanical properties research about frozen soil pile foundation under cyclic loading[J]. Journal of Railway Science and Engineering, 2017, 14(10): 2111–2117. doi: 10.3969/j.issn.1672-7029.2017.10.011
[4] 栗晓林,王红坚,邹少军,等. 振动荷载作用下冻结砂土强度及破坏特性试验研究[J]. 振动工程学报,2018,31(6):1068–1075. LI Xiaolin, WANG Hongjian, ZOU Shaojun, et al. The strength and failure properties of frozen sand under vibrating load[J]. Journal of Vibration Engineering, 2018, 31(6): 1068–1075.
[5] 路贵林. 多年冻土区高温冻土力学特性试验研究[D]. 徐州: 中国矿业大学, 2015. LU Guilin. Experimental study on mechanical properties for warm frozen soils in permafrost regions[D]. Xuzhou: China University of Mining and Technology, 2015.
[6] 张德华,王梦恕,任少强. 青藏铁路多年冻土隧道围岩季节活动层温度及响应的试验研究[J]. 岩石力学与工程学报,2007,26(3):614–619. doi: 10.3321/j.issn:1000-6915.2007.03.025 ZHANG Dehua, WANG Mengshu, REN Shaoqiang. Experimental study on temperature and response of seasonal active layer of tunnel’s surrounding rock in permafrost region on Qinghai-Tibet Plateau[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(3): 614–619. doi: 10.3321/j.issn:1000-6915.2007.03.025
[7] 杨旭,严松宏,马丽娜. 季节性冻土区隧道温度场分析与预测[J]. 隧道建设,2012,32(1):57–60. YANG Xu, YAN Songhong, MA Lina. Analysis on and prediction of temperature field of tunnels located in seasonal frozen area[J]. Tunnel Construction, 2012, 32(1): 57–60.
[8] 王铁行,胡长顺,王秉纲,等. 考虑多种因素的冻土路基温度场有限元方法[J]. 中国公路学报,2000,13(4):8–11. doi: 10.3321/j.issn:1001-7372.2000.04.002 WANG Tiexing, HU Changshun, WANG Binggang, et al. A finite element method for thermal field analysis of frozen soil subgrade on the consideration of all field-factors[J]. China Journal of Highway and Transport, 2000, 13(4): 8–11. doi: 10.3321/j.issn:1001-7372.2000.04.002
[9] 马巍,刘端,吴青柏. 青藏铁路冻土路基变形监测与分析[J]. 岩土力学,2008,29(3):571–579. doi: 10.3969/j.issn.1000-7598.2008.03.001 MA Wei, LIU Duan, WU Qingbai. Monitoring and analysis of embankment deformation in permafrost regions of Qinghai-Tibet Railway[J]. Rock and Soil Mechanics, 2008, 29(3): 571–579. doi: 10.3969/j.issn.1000-7598.2008.03.001
[10] 吴玉林.青藏铁路多年冻土地区房屋体系研究[J].冰川冻土, 2003, 25(增刊1): 108–111. WU Yulin. Study of building system in permafrost regions along the Qinghai-Tibet Railway[J]. Journal of Glaciology and Geocryology, 2003, 25(supplement 1): 108–111.
[11] 袁伟.冻结砂土三轴抗压强度和变形机理研究[D].兰州: 兰州大学, 2020. YUAN Wei. Triaxial compressive strength and deformation mechanism of frozen sand[D]. Lanzhou: Lanzhou University, 2020.
[12] 马冬冬,马芹永,袁璞,等. 主动围压状态人工冻结砂土SHPB试验与分析[J]. 岩土力学,2017,38(10):2957–2961, 2972. MA Dongdong, MA Qinyong, YUAN Pu, et al. SHPB tests on artificial frozen sand and its analysis under active confining pressure[J]. Rock and Soil Mechanics, 2017, 38(10): 2957–2961, 2972.
[13] 常小晓,马巍,王大雁. 高围压下冻结粘土的抗压强度试验研究[J]. 冰川冻土,2007,29(4):636–639. doi: 10.3969/j.issn.1000-0240.2007.04.018 CHANG Xiaoxiao, MA Wei, WANG Dayan. Study on the strength of frozen clay at high confining pressure[J]. Journal of Glaciology and Geocryology, 2007, 29(4): 636–639. doi: 10.3969/j.issn.1000-0240.2007.04.018
[14] 黄星,李东庆,明锋,等. 冻结粉质黏土声学特性与物理力学性质试验研究[J]. 岩石力学与工程学报,2015,34(7):1489–1496. HUANG Xing, LI Dongqing, MING Feng, et al. Experimental study on acoustic characteristics and physico-mechanical properties of frozen silty clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(7): 1489–1496.
[15] 黄星,李东庆,明锋,等. 冻土的单轴抗压、抗拉强度特性试验研究[J]. 冰川冻土,2016,38(5):1346–1352. HUANG Xing, LI Dongqing, MING Feng, et al. Experimental study of the compressive and tensile strengths of artificial frozen soil[J]. Journal of Glaciology and Geocryology, 2016, 38(5): 1346–1352.
[16] 袁伟,姚晓亮,王文丽. 基于离散元的冻结砂土三轴力学特性研究[J]. 冰川冻土,2019,41(6):1388–1396. YUAN Wei, YAO Xiaoliang, WANG Wenli. Study on triaxial mechanical behaviors of frozen sand based on discrete element method[J]. Journal of Glaciology and Geocryology, 2019, 41(6): 1388–1396.
[17] 白瑞强,徐湘田,华树广,等. 基于多元线性回归模型的冻土强度影响因素显著性分析[J]. 冰川冻土,2019,41(2):416–423. BAI Ruiqiang, XU Xiangtian, HUA Shuguang, et al. Significant analysis of the influence factors on strength of frozen soil base on multivariable linear regression model[J]. Journal of Glaciology and Geocryology, 2019, 41(2): 416–423.
-
期刊类型引用(1)
1. 潘冠昌,杨斌,张浩,常坤,冯云辉. 超深层碳酸盐岩裂缝面形态与摩擦因数研究. 断块油气田. 2022(06): 794-799 . 百度学术
其他类型引用(4)