长宁区块强封堵油基钻井液技术研究及应用

王志远, 黄维安, 范宇, 李萧杰, 王旭东, 黄胜铭

王志远, 黄维安, 范宇, 李萧杰, 王旭东, 黄胜铭. 长宁区块强封堵油基钻井液技术研究及应用[J]. 石油钻探技术, 2021, 49(5): 31-38. DOI: 10.11911/syztjs.2021039
引用本文: 王志远, 黄维安, 范宇, 李萧杰, 王旭东, 黄胜铭. 长宁区块强封堵油基钻井液技术研究及应用[J]. 石油钻探技术, 2021, 49(5): 31-38. DOI: 10.11911/syztjs.2021039
WANG Zhiyuan, HUANG Weian, FAN Yu, LI Xiaojie, WANG Xudong, HUANG Shengming. Technical Research and Application of Oil Base Drilling Fluid with Strong Plugging Property in Changning Block[J]. Petroleum Drilling Techniques, 2021, 49(5): 31-38. DOI: 10.11911/syztjs.2021039
Citation: WANG Zhiyuan, HUANG Weian, FAN Yu, LI Xiaojie, WANG Xudong, HUANG Shengming. Technical Research and Application of Oil Base Drilling Fluid with Strong Plugging Property in Changning Block[J]. Petroleum Drilling Techniques, 2021, 49(5): 31-38. DOI: 10.11911/syztjs.2021039

长宁区块强封堵油基钻井液技术研究及应用

基金项目: 国家自然科学基金项目“具有温度开关效应的环保型钻井液封堵剂研制及其作用机理”(编号:51974351)、“南海天然气水合物钻采机理与调控”(编号:51991361)资助
详细信息
    作者简介:

    王志远(1995—),男,山东临沂人,2019年毕业于榆林学院石油工程专业,在读硕士研究生,从事钻井液完井液研究。E-mail:masterwang1995@163.com。

  • 中图分类号: TE254+.6

Technical Research and Application of Oil Base Drilling Fluid with Strong Plugging Property in Changning Block

  • 摘要: 分析清楚长宁区块龙马溪组和五峰组井眼失稳的原因,提出强化井眼稳定的钻井液技术对策,对该区块水平井水平段的钻进至关重要。基于X射线衍射、扫描电子显微镜、页岩膨胀、滚动分散试验,揭示了复杂地层的井眼失稳机理,提出了“强化封堵微观孔隙、抑制滤液侵入和阻缓压力传递”协同的井眼稳定技术对策。采用砂床滤失仪、高温高压滤失模拟装置、微孔滤膜等试验装置,优选了以封堵剂为主的长宁区块油基钻井液处理剂,构建了适用于长宁区块的强封堵油基钻井液体系,其抗温135 ℃,抗盐10%,抗钙1%,抗劣土8%,400 μm宽裂缝的承压能力达5 MPa,0.22和0.45 μm孔径微孔滤膜的滤失量均为0,封堵效果突出,综合性能优于常规油基钻井液。该钻井液在长宁区块现场试应用10余口井,龙马溪组和五峰组水平段均未出现井眼失稳的问题;与同区块采用常规钻井液的已钻井相比,复杂地层的井径扩大率平均降低10.82%,建井周期平均缩短4.5 d。研究结果表明,强封堵油基钻井液技术解决了长宁区块水平井龙马溪组和五峰组水平段的井眼失稳问题,具有较好的推广应用价值。
    Abstract: It is crucial for drilling the horizontal sections of horizontal wells in Changing Block to uncover the reasons for borehole instability in Longmaxi and Wufeng fromations and put forward the countermeasures of drilling fluid technology to strengthen the borehole stability. Based on X-ray diffraction, scanning electron microscopy, shale swelling, and rolling dispersion tests, the mechanism for the borehole instability of complex strata was revealed and a coordinative borehole stability method was proposed, i.e., "strengthening plugging of micropores, inhibition of filtrate invasion, and retardation of pressure transfer". With the test devices such as sand-bed filtration testers, high-temperature and high-pressure filtration simulators, and microporous membranes, the treatment agent of oil base drilling fluid in Changning Block, which was dominated by plugging agents, was selected. And a drilling fluid system with strong plugging property, which was suitable for Changning Block, was developed. The system had a temperature resistance of 135 ℃, salt resistance of 10%, calcium resistance of 1%, poor-soil contamination resistance of 8%, bearing capacity of 5 MPa for 400 μm fractures, and filtration loss of 0 for both 0.22 μm and 0.45 μm microporous membranes. Its plugging effect was significant, and its comprehensive performance was better than that of ordinary drilling fluid. The drilling fluid was applied to more than 10 wells in Changning Block and borehole instability was not encountered in the horizontal sections of Longmaxi and Wufeng formations. In comparison with the drilled wells applied with the conventional drilling fluid technology in the same block, the hole diameter enlargement rate of complex formations was reduced by 10.82% on average, and the construction cycle was shortened by 4.5 days on average. The research results demonstrated that the oil base drilling fluid technology with strong plugging property can effectively solve the borehole instability problem in the horizontal sections of Longmaxi and Wufeng formations in Changning Block, and it is worthy of promotion and application.
  • 图  1   龙马溪组岩样SEM扫描电镜照片

    Figure  1.   SEM images of rock samples in Longmaxi formation

    图  2   龙马溪组岩样水化膨胀和水化分散性能测试结果

    Figure  2.   Test results of the hydration swelling and dispersion properties of rock samples from Longmaxi Formation

    图  3   封堵剂优选试验结果

    Figure  3.   Experimental results of plugging agent optimization

    图  4   页岩在钻井液中的水化膨胀试验结果

    Figure  4.   Experimental results of the hydration swelling of shale in drilling fluid

    图  5   钻井液水化膨胀试验结果

    Figure  5.   Experimental results of the hydration swelling of drilling fluid

    表  1   龙马溪组和五峰组岩心黏土矿物相对含量分析结果

    Table  1   Relative content analysis of clay minerals in core samples from Longmaxi and Wufeng formations

    井名层位黏土矿物相对含量,%间层比,
    %
    高岭石绿泥石伊利石伊/蒙间层
    CN156井龙马溪组010504020
    CN355井龙马溪组0 6702420
    CN194井龙马溪组024492720
    CN355井五峰组011652420
    CN419井五峰组011632620
     注:数据来自重质油国家重点实验室(中国石油大学)。
    下载: 导出CSV

    表  2   乳化剂优选试验结果

    Table  2   Experimental results of emulsifying agent optimization

    类别条件密度/
    (kg·L–1
    表观黏度/
    (mPa·s)
    塑性黏度/
    (mPa·s)
    静切力/Pa动塑比API滤失量/
    mL
    破乳电压/
    V
    初切 终切
    基浆1老化前0.854.50.50.51 1.020.1350.02 047
    老化后4.01.00.511.020.3330.0
    基浆1+EM-SL老化前0.867.01.00 0 0.1713.01 101
    老化后12.0 3.01.53 1.530.3310.0
    基浆1+EM-JH老化前0.868.02.00 0 0.3317.01 012
    老化后12.0 3.02.042.550.3313.0
    基浆1+EM-XG老化前0.865.50.50 0 0.1022.4 990
    老化后12.0 3.01.53 1.530.3318.0
     注:基浆1配方为:360 mL白油+40 mL25%CaCl2溶液+3%贝克休斯有机土BK。
    下载: 导出CSV

    表  3   降滤失剂优选试验结果

    Table  3   Experimental results of filtrate reducer optimization

    类别条件密度/
    (kg·L–1
    表观黏度/
    (mPa·s)
    塑性黏度/
    (mPa·s)
    静切力/Pa动塑比API滤失量/
    mL
    初切 终切
    基浆2老化前0.87 7.01.00 0 0.1713.0
    老化后12.03.01.53 1.530.3310.0
    基浆2+油基褐煤SL老化前0.8810.01.01.02 1.530.118.0
    老化后12.52.51.53 2.040.257.6
    基浆2+FR-BK老化前0.8812.01.01.02 2.040.092.0
    老化后26.58.53.584.600.476.4
    基浆2+FR-JH老化前0.8910.51.51.021.530.179.0
    老化后20.56.51.532.560.468.0
     注:基浆2配方为:360 mL白油+ 4%主乳化剂EM-SL-1 + 2%辅乳化剂EM-SL-2 + 40 mL25%CaCl2溶液+ 3%贝克休斯有机土BK。
    下载: 导出CSV

    表  4   强封堵钻井液抗污染性能评价结果

    Table  4   Evaluation results of the pollution resistance of drilling fluid with strong plugging property

    条件密度/
    (kg·L–1
    表观黏度/
    (mPa·s)
    塑性黏度/
    (mPa·s)
    动切力/
    Pa
    静切力/PaAPI滤失量/
    mL
    初切 终切
    抗NaCl性老化前1.5067.55314.58.18 15.300.2
    老化后77.55918.53.58 25.550.2
    抗CaCl2老化前1.5079.06514.04.09 24.530.2
    老化后83.56221.512.78 28.110
    耐劣土性老化前1.5067.55215.58.1815.330
    老化后85.06025.011.75 27.080
    下载: 导出CSV

    表  5   强封堵钻井液抗温耐温性能评价结果

    Table  5   Evaluation results of the temperature resistance of drilling fluid with strong plugging property

    条件密度/
    (kg·L–1
    表观黏度/
    (mPa·s)
    塑性黏度/
    (mPa·s)
    动切力/
    Pa
    静切力/PaAPI滤失量/
    mL
    初切 终切
    抗温性(135 ℃/16 h)老化前1.5067.55215.58.18 15.330.2
    老化后75.06015.03.58 23.510
    耐温性(125 ℃/32 h)老化前1.5067.55215.58.18 15.330.2
    老化后78.06414.010.22 15.330
    下载: 导出CSV
  • [1] 樊朋飞. WY-CN龙马溪组页岩水平井井壁坍塌失稳机理研究[D]. 成都: 西南石油大学, 2016.

    FAN Pengfei. Study on the mechanism of sidewall collapse and instability of horizontal shale wells in Longmaxi Formation of WY-CN[D]. Chengdu: Southwest Petroleum University, 2016.

    [2] 刘敬平,孙金声. 页岩气藏地层井壁水化失稳机理与抑制方法[J]. 钻井液与完井液,2016,33(3):25–29. doi: 10.3969/j.issn.1001-5620.2016.03.005

    LIU Jingping, SUN Jinsheng. Borehole wall collapse and control in shale gas well drilling[J]. Drilling Fluid & Completion Fluid, 2016, 33(3): 25–29. doi: 10.3969/j.issn.1001-5620.2016.03.005

    [3] 王晓军,白冬青,孙云超,等. 页岩气井强化封堵全油基钻井液体系:以长宁—威远国家级页岩气示范区威远区块为例[J]. 天然气工业,2020,40(6):107–114.

    WANG Xiaojun, BAI Dongqing, SUN Yunchao, et al. Plugging-enhanced whole oil-based drilling fluid system for shale gas wells: a cased study of the Weiyuan Block in the Changning-Weiyuan National Shale Gas Demonstration Area[J]. Natural Gas Industry, 2020, 40(6): 107–114.

    [4] 凡帆,王京光,蔺文洁. 长宁区块页岩气水平井无土相油基钻井液技术[J]. 石油钻探技术,2016,44(5):34–39. doi: 10.11911/syztjs.201605006

    FAN Fan, WANG Jingguang, LIN Wenjie. Clay-free oil based drilling fluid technology for shale gas horizontal wells in the Changning Block[J]. Petroleum Drilling Techniques, 2016, 44(5): 34–39. doi: 10.11911/syztjs.201605006

    [5] 王显光,高书阳,褚奇,等. 不同流体介质条件下龙马溪组页岩井壁稳定性能评价[J]. 长江大学学报(自然科学版),2020,17(2):45–52.

    WANG Xianguang, GAO Shuyang, CHU Qi, et al. Evaluation on shale borehole stability of Longmaxi Formation in different fluid media[J]. Journal of Yangtze University(Natural Science Edition), 2020, 17(2): 45–52.

    [6]

    DARLEY H C H. A laboratory investigation of borehole stability[J]. Journal of Petroleum Technology, 1969, 21(7): 883–892. doi: 10.2118/2400-PA

    [7]

    CHEN X, TAN C P, DETOURNAY C. A study on wellbore stability in fractured rock masses with impact of mud infiltration[J]. Journal of Petroleum Science and Engineering, 2003, 38(3/4): 145–154.

    [8] 赵海锋,王勇强,凡帆. 页岩气水平井强封堵油基钻井液技术[J]. 天然气技术与经济,2018,12(5):33–36. doi: 10.3969/j.issn.2095-1132.2018.05.010

    ZHAO Haifeng, WANG Yongqiang, FAN Fan. Oil-based drilling fluid technology for strong plugging of shale gas horizontal wells[J]. Natural Gas Technology, 2018, 12(5): 33–36. doi: 10.3969/j.issn.2095-1132.2018.05.010

    [9]

    CHEN X, YANG Q, QIU K B, et al. An anisotropic strength criterion for jointed rock masses and its application in wellbore stability analyses[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32(6): 607–631. doi: 10.1002/nag.638

    [10]

    ZHANG Jincai. Borehole stability analysis accounting for anisotropies in drilling to weak bedding planes[J]. International Journal of Rock Mechanics and Mining Sciences, 2013, 60: 160–170. doi: 10.1016/j.ijrmms.2012.12.025

    [11] 钟峰, 杨哲, 罗双平. 长宁页岩气水平段钻井难点与对策[J]. 钻采工艺, 2020, 43(增刊1): 4–7.

    ZHONG Feng, YANG Zhe, LUO Shuangping. Drilling difficulties and countermeasures in Changning shale gas horizontal section[J]. Drilling & Production Technology, 2020, 43(supplement1): 4–7.

    [12]

    GAEDE O, KARPFINGER F, JOCKER J, et al. Comparison between analytical and 3D finite element solutions for borehole stresses in anisotropic elastic rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 51: 53–63. doi: 10.1016/j.ijrmms.2011.12.010

    [13] 唐国旺,宫伟超,于培志. 强封堵油基钻井液体系的研究和应用[J]. 探矿工程(岩土钻掘工程),2017,44(11):21–25.

    TANG Guowang, GONG Weichao, YU Peizhi. Research and application of strong plugging oil-based drilling fluid system[J]. Exploration Engineering(Rock & Soil Drilling and Tunneling), 2017, 44(11): 21–25.

    [14] 温银武,周雪. 油基钻井液技术在川西页岩气井的应用[J]. 辽宁化工,2016,45(6):773–776.

    WEN Yinwu, ZHOU Xue. Application of oil-base drilling fluid technology in western Sichuan shale gas wells[J]. Liaoning Chemical Industry, 2016, 45(6): 773–776.

    [15] 梁利喜,庄大琳,刘向君,等. 龙马溪组页岩的力学特性及破坏模式研究[J]. 地下空间与工程学报,2017,13(1):108–116.

    LIANG Lixi, ZHUANG Dalin, LIU Xiangjun, et al. Study on mechanical properties and failure modes of Longmaxi shale[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(1): 108–116.

    [16] 孙金声,刘敬平,闫丽丽,等. 国内外页岩气井水基钻井液技术现状及中国发展方向[J]. 钻井液与完井液,2016,33(5):1–8.

    SUN Jinsheng, LIU Jingping, YAN Lili, et al. Status quo of water base drilling fluid technology for shale gas drilling in China and abroad and its developing trend in China[J]. Drilling Fluid & Completion Fluid, 2016, 33(5): 1–8.

    [17] 张高波,高秦陇,马倩芸. 提高油基钻井液在页岩气地层抑制防塌性能的措施[J]. 钻井液与完井液,2019,36(2):141–147. doi: 10.3969/j.issn.1001-5620.2019.02.002

    ZHANG Gaobo, GAO Qinlong, MA Qianyun. Discussion on the enhancement of the inhibitive capacity of oil base drilling fluids in shale gas drilling[J]. Drilling Fluid & Completion Fluid, 2019, 36(2): 141–147. doi: 10.3969/j.issn.1001-5620.2019.02.002

    [18] 黄维安,邱正松,徐加放,等. 吐哈西部油田井壁失稳机理实验研究[J]. 石油学报,2007,28(3):116–119, 123. doi: 10.3321/j.issn:0253-2697.2007.03.024

    HUANG Weian, QIU Zhengsong, XU Jiafang, et al. Experimental study on sidewall instability mechanism of oil wells in the western Tuha Oilfield[J]. Acta Petrolei Sinica, 2007, 28(3): 116–119, 123. doi: 10.3321/j.issn:0253-2697.2007.03.024

    [19] 钟汉毅,邱正松,黄维安,等. 聚胺水基钻井液特性实验评价[J]. 油田化学,2010,27(2):119–123.

    ZHONG Hanyi, QIU Zhengsong, HUANG Weian, et al. Experimental evaluation on polyamine water-based drilling fluid[J]. Oilfield Chemistry, 2010, 27(2): 119–123.

    [20] 钟汉毅,黄维安,邱正松,等. 新型两亲性低分子多胺页岩抑制剂的特性[J]. 东北石油大学学报,2012,36(5):51–55, 60. doi: 10.3969/j.issn.2095-4107.2012.05.010

    ZHONG Hanyi, HUANG Weian, QIU Zhengsong, et al. Properties of a novel amphipathic low molecular weight multi-amine shale inhibitor[J]. Journal of Northeast Petroleum University, 2012, 36(5): 51–55, 60. doi: 10.3969/j.issn.2095-4107.2012.05.010

  • 期刊类型引用(4)

    1. 李昂,杨万有,郑春峰,沈琼,赵景辉,薛德栋. 海上油田采油技术创新实践及发展方向. 石油钻探技术. 2024(06): 75-85 . 本站查看
    2. 杨阳,曹砚锋,于继飞,邢希金,杜孝友. 基于等级加权法的油田注水水质优选方法. 西安石油大学学报(自然科学版). 2019(02): 99-103 . 百度学术
    3. 魏永祥,刘俊刚,陈敏,关野,王晓明,步万荣. 电潜泵提液采油配套技术的应用. 价值工程. 2018(32): 246-247 . 百度学术
    4. 郭志辉,秦丙林,陆国琛,李乾,王颖. WZ油田人工举升方式优选研究. 海洋石油. 2018(04): 45-51 . 百度学术

    其他类型引用(1)

图(5)  /  表(5)
计量
  • 文章访问数:  688
  • HTML全文浏览量:  289
  • PDF下载量:  163
  • 被引次数: 5
出版历程
  • 收稿日期:  2020-12-07
  • 修回日期:  2021-07-10
  • 网络出版日期:  2021-07-08
  • 刊出日期:  2021-10-17

目录

    /

    返回文章
    返回