吉木萨尔页岩油区块防漏堵漏技术

周双君, 朱立鑫, 杨森, 毛俊, 李萧杰, 黄维安

周双君, 朱立鑫, 杨森, 毛俊, 李萧杰, 黄维安. 吉木萨尔页岩油区块防漏堵漏技术[J]. 石油钻探技术, 2021, 49(4): 66-70. DOI: 10.11911/syztjs.2021034
引用本文: 周双君, 朱立鑫, 杨森, 毛俊, 李萧杰, 黄维安. 吉木萨尔页岩油区块防漏堵漏技术[J]. 石油钻探技术, 2021, 49(4): 66-70. DOI: 10.11911/syztjs.2021034
ZHOU Shuangjun, ZHU Lixin, YANG Sen, MAO Jun, LI Xiaojie, HUANG Weian. Technology for Preventing and Controlling Circulation Loss in the Jimusar Shale Oil Block[J]. Petroleum Drilling Techniques, 2021, 49(4): 66-70. DOI: 10.11911/syztjs.2021034
Citation: ZHOU Shuangjun, ZHU Lixin, YANG Sen, MAO Jun, LI Xiaojie, HUANG Weian. Technology for Preventing and Controlling Circulation Loss in the Jimusar Shale Oil Block[J]. Petroleum Drilling Techniques, 2021, 49(4): 66-70. DOI: 10.11911/syztjs.2021034

吉木萨尔页岩油区块防漏堵漏技术

基金项目: 国家科技重大专项“致密油气开发环境保护技术集成及关键装备”(编号:2016ZX05040-005)的部分研究内容
详细信息
    作者简介:

    周双君(1984—),男,湖北荆州人,2006年毕业于长江大学应用化学专业,2009年获长江大学应用化学专业硕士学位,高级工程师,主要从事钻井液与完井液技术研究与应用。E-mail:zhshjxj@cnpc.com.cn

  • 中图分类号: TE28+3

Technology for Preventing and Controlling Circulation Loss in the Jimusar Shale Oil Block

  • 摘要: 针对吉木萨尔页岩油区块钻井过程中漏失频发的问题,从地层分布、岩性差异与储层发育特性方面分析了漏失机理,发现该页岩油区块的漏失主要集中在侏罗系八道湾组和二叠系梧桐沟组,浅部漏失地层砂砾岩孔隙发育,胶结疏松,深部漏失地层诱导裂缝发育,所发生漏失分别为渗透性漏失和诱导裂缝漏失。基于吉木萨尔页岩油区块的漏失机理,结合该区块处理漏失的经验,制定了堵漏材料与漏失速度的匹配原则及防漏堵漏技术措施,形成了适用于吉木萨尔页岩油区块的防漏堵漏技术。吉木萨尔页岩油区块应用该技术以后,漏失发生率由38.0%降至19.7%,堵漏成功率提高到了75%。这表明,页岩油区块防漏堵漏技术可以解决吉木萨尔页岩油区块漏失频发的问题,可为该区块的开发提供技术支持。
    Abstract: To address the problem of frequent circulation loss during the drilling of the Jimusaer shale oil block, an analysis of the relevant mechanism was conducted from the perspectives of stratigraphic distribution, lithological differences, and reservoir development characteristics. The circulation loss in this block was mainly concentrated in the Jurassic Badaowan Formation and the Permian Wutonggou Formation. The pores were developed in the glutenite of the unconsolidated shallow loss formation, while the induced fractures occurred in the deep loss formation. The circulation loss can be classified into the permeable type and the induced fracture type. Depending on circulation loss mechanism and the experience of dealing with it in the Jimusaer shale oil block, the matching principle between plugging materials and the circulation loss rate was formulated, and prevention and control countermeasures were proposed. As a result, the technology to prevent and control circulation loss was developed for the Jimusaer shale oil block. It reduced the incidence of circulation loss from 38.00% to 19.70% and enhanced the success rate of plugging to 75% in the block. This indicates that the proposed technology is effective for tackling the problem of frequent circulation loss in the Jimusaer shale oil block, and can provide technical support for the development of this block.
  • 表  1   吉45井测井井段孔隙度解释结果

    Table  1   Interpretation results of porosity in the logging section of Well Ji 45

    地层井段/m
    密度/
    (kg·L–1
    孔隙度,
    %
    渗透率/
    mD
    梧桐沟组3123.6~3126.02.4511.839.1
    3126.8~3128.32.49 9.938.5
    3135.5~3139.72.4710.639.2
    3158.0~3163.42.4810.144.1
    3167.3~3170.92.51 8.437.3
    3175.1~3182.62.49 9.440.9
    芦草沟组3247.7~3249.52.50 6.048.1
    3263.4~3266.42.4410.377.2
    3267.0~3268.02.49 4.538.6
    3269.1~3272.12.50 6.653.2
    3272.7~3273.42.45 4.234.3
    3277.0~3281.72.46 8.359.9
    3281.7~3283.62.52 5.026.4
    3283.6~3285.52.46 6.651.9
    3289.4~3294.22.44 9.060.1
    3305.4~3307.62.47 7.257.3
    3311.3~3313.02.46 4.533.8
    3313.9~3316.22.47 7.259.2
    3323.3~3327.32.49 7.562.4
    3331.3~3333.52.51 5.946.6
    3340.7~3341.82.50 3.333.5
    井井子沟组3432.4~3437.12.46 8.137.9
    3440.9~3443.92.49 6.941.2
    3451.2~3453.42.48 7.634.5
    3454.4~3457.82.46 8.541.6
    3458.8~3463.32.45 9.040.3
    下载: 导出CSV

    表  2   堵漏材料与漏失速度的匹配原则

    Table  2   Matching principle between plugging materials and the circulation loss rate

    漏失速度/
    (m3·h–1
    核桃壳加量,%棉籽壳/
    果壳加
    量,%
    KZ系列/
    TP-2堵漏剂
    加量,%
    蛭石加
    量,%
    纤维FCL
    加量,%
    1~3 mm3~5 mm
    1~54~6
    5~152~42~31~23~410.2~0.4
    15~304~53~52~33~410.3~0.4
    >306~85~83~53~410.4~0.5
    下载: 导出CSV
  • [1] 刘延强,徐同台,杨振杰,等. 国内外防漏堵漏技术新进展[J]. 钻井液与完井液,2010,27(6):80–84. doi: 10.3969/j.issn.1001-5620.2010.06.023

    LIU Yanqiang, XU Tongtai, YANG Zhenjie, et al. Recent progress on preventing and treating lost circulation domestic and overseas[J]. Drilling Fluid & Completion Fluid, 2010, 27(6): 80–84. doi: 10.3969/j.issn.1001-5620.2010.06.023

    [2] 吴显盛. 钻井工程中井漏预防及堵漏技术分析[J]. 化学工程与装备,2019(2):85–86.

    WU Xiansheng. Leak prevention and plugging technology analysis in drilling engineering[J]. Chemical Engineering & Equipment, 2019(2): 85–86.

    [3] 徐同台. 钻井工程防漏堵漏技术[M]. 北京: 石油工业出版社, 1997: 217–220.

    XU Tongtai. Technology of well drilling sealing up and leaking stoppage[M]. Beijing: Petroleum Industry Press, 1997: 217–220.

    [4] 潘军,李大奇. 顺北油田二叠系火成岩防漏堵漏技术[J]. 钻井液与完井液,2018,35(3):42–47. doi: 10.3969/j.issn.1001-5620.2018.03.007

    PAN Jun, LI Daqi. Technology of preventing and controlling mud losses into the Permian igneous rocks in Shunbei Oilfied[J]. Drilling Fluid & Completion Fluid, 2018, 35(3): 42–47. doi: 10.3969/j.issn.1001-5620.2018.03.007

    [5] 殷召海,李国强,王海,等. 克拉苏构造带博孜1 区块复杂超深井钻井完井关键技术[J]. 石油钻探技术,2021,49(1):16–21.

    YIN Zhaohai, LI Guoqiang, WANG Hai, et al. Key technologies for drilling and completing ultra-deep wells in the Bozi 1 Block of Kelasu Structure[J]. Petroleum Drilling Techniques, 2021, 49(1): 16–21.

    [6] 赵洪波,朱迪斯,黄正,等. 南华北盆地亳州—阜阳地区页岩气钻井技术[J]. 石油钻采工艺,2020,42(6):679–683.

    ZHAO Hongbo, ZHU Disi, HUANG Zheng, et al. Shale gas drilling technologies used in Bozhou-Fuyang Area of the Southern North China Basin[J]. Oil Drilling & Production Technology, 2020, 42(6): 679–683.

    [7] 谢春来,胡清富,张凤臣,等. 伊拉克哈法亚油田Mishrif 组碳酸盐岩储层防漏堵漏技术[J]. 石油钻探技术,2021,49(1):41–46.

    XIE Chunlai, HU Qingfu, ZHANG Fengchen, et al. Antileaking and lost circulation control technology for the Mishrif carbonate reservoir in the Halfaya Oilfield of Iraq[J]. Petroleum Drilling Techniques, 2021, 49(1): 41–46.

    [8] 刘彪,张俊,王居贺,等. 顺北油田含侵入岩区域超深井安全高效钻井技术[J]. 石油钻采工艺,2020,42(2):138–142.

    LIU Biao, ZHANG Jun, WANG Juhe, et al. Technologies for the safe and efficient drilling of ultradeep wells in the areas with intrusive rocks in the Shunbei Oilfield[J]. Oil Drilling & Production Technology, 2020, 42(2): 138–142.

    [9] 彭兴,周玉仓,朱智超,等. 延川南深部煤层气井防漏堵漏技术[J]. 石油钻探技术,2021,49(1):47–52.

    PENG Xing, ZHOU Yucang, ZHU Zhichao, et al. Antileaking and lost circulation control technology for deep coalbed methane well in the Yanchuannan Block[J]. Petroleum Drilling Techniques, 2021, 49(1): 47–52.

    [10] 韩子轩,林永学,柴龙,等. 裂缝性气藏封缝堵气技术研究[J]. 钻井液与完井液,2017,34(1):16–22. doi: 10.3969/j.issn.1001-5620.2017.01.003

    HAN Zixuan, LIN Yongxue, CHAI Long, et al. Plugging micro-fractures to prevent gas-cut in fractured gas reservoir drilling[J]. Drilling Fluid & Completion Fluid, 2017, 34(1): 16–22. doi: 10.3969/j.issn.1001-5620.2017.01.003

    [11] 刘四海,崔庆东,李卫国. 川东北地区井漏特点及承压堵漏技术难点与对策[J]. 石油钻探技术,2008,36(3):20–23. doi: 10.3969/j.issn.1001-0890.2008.03.005

    LIU Sihai, CUI Qingdong, LI Weiguo. Circulation loss characteristics and challenges and measures to plug under pressure in Northeast Sichuan Area[J]. Petroleum Drilling Techniques, 2008, 36(3): 20–23. doi: 10.3969/j.issn.1001-0890.2008.03.005

    [12]

    AFOLABI R O, PASEDA P, HUNJENUKON S, et al. Model prediction of the impact of zinc oxide nanoparticles on the fluid loss of water-based drilling mud[J]. Cogent Engineering, 2018, 5(1): 15145785.

    [13] 李公让,于雷,刘振东,等. 弹性孔网材料的堵漏性能评价及现场应用[J]. 石油钻探技术,2021,49(2):48–53.

    LI Gongrang, YU Lei, LIU Zhendong, et al. The evaluation and application of lost circulation control by elastic mesh materials[J]. Petroleum Drilling Techniques, 2021, 49(2): 48–53.

    [14] 于欣,张振,郭梦扬,等. 抗高温油基钻井液堵漏剂的研制与应用:以龙马溪组页岩气井W204H为例[J]. 断块油气田,2021,28(2):168–172.

    YU Xin, ZHANG Zhen, GUO Mengyang, et al. Development and application of high temperature resistant oil-based drilling fluid plugging agent:taking shale gas well W204H of Longmaxi Formation as an example[J]. Fault-Block Oil & Gas Field, 2021, 28(2): 168–172.

    [15] 张杜杰,金军斌,陈瑜,等. 深部裂缝性致密储层随钻堵漏材料补充时机研究[J]. 特种油气藏,2020,27(6):158–164.

    ZHANG Dujie, JIN Junbin, CHEN Yu, et al. Study on the supplement timing of leakage stoppage materials while drilling for deep fractured tight reservoirs[J]. Special Oil & Gas Reservoirs, 2020, 27(6): 158–164.

    [16] 柳伟荣,倪华峰,王学枫,等. 长庆油田陇东地区页岩油超长水平段水平井钻井技术[J]. 石油钻探技术,2020,48(1):9–14.

    LIU Weirong, NI Huafeng, WANG Xuefeng, et al. Shale oil horizontal drilling technology with super-long horizontal laterals in the Longdong Region of the Changqing Oilfield[J]. Petroleum Drilling Techniques, 2020, 48(1): 9–14.

    [17] 高霞,谢庆宾. 储层裂缝识别与评价方法新进展[J]. 地球物理学进展,2007,22(5):1460–1465. doi: 10.3969/j.issn.1004-2903.2007.05.017

    GAO Xia, XIE Qingbin. Advances in identification and evaluation of fracture[J]. Progress in Geophysics, 2007, 22(5): 1460–1465. doi: 10.3969/j.issn.1004-2903.2007.05.017

    [18] 王业众,康毅力,游利军,等. 裂缝性储层漏失机理及控制技术进展[J]. 钻井液与完井液,2007,24(4):74–77. doi: 10.3969/j.issn.1001-5620.2007.04.023

    WANG Yezhong, KANG Yili, YOU Lijun, et al. Progresses in mechanism study and control: mud losses to fractured reservoirs[J]. Drilling Fluid & Completion Fluid, 2007, 24(4): 74–77. doi: 10.3969/j.issn.1001-5620.2007.04.023

    [19] 贾利春,陈勉,张伟,等. 诱导裂缝性井漏止裂封堵机理分析[J]. 钻井液与完井液,2013,30(5):82–85. doi: 10.3969/j.issn.1001-5620.2013.05.023

    JIA Lichun, CHEN Mian, ZHANG Wei, et al. Plugging mechanism of induced fracture for controlling lost circulation[J]. Drilling Fluid & Completion Fluid, 2013, 30(5): 82–85. doi: 10.3969/j.issn.1001-5620.2013.05.023

  • 期刊类型引用(0)

    其他类型引用(1)

表(2)
计量
  • 文章访问数:  598
  • HTML全文浏览量:  249
  • PDF下载量:  148
  • 被引次数: 1
出版历程
  • 收稿日期:  2020-08-12
  • 修回日期:  2021-03-31
  • 网络出版日期:  2021-07-06
  • 刊出日期:  2021-08-24

目录

    /

    返回文章
    返回