Research and Application of Prolonged-Effect Acidizing Technology for Water Injection Wells in the Bohai Oilfield
-
摘要: 针对渤海油田注水井重复酸化效果逐渐变差的问题,进行了注水井延效酸化技术研究。采用3种低浓度深部缓速酸进行协同增效,加强酸液的储层保护性能,并加入防膨剂和表面活性剂,配制了延效酸;在温度60 ℃条件下,测试了延效酸对现场垢样、钙蒙脱石和二氧化硅的溶蚀效果,抑制注入水结垢性能、洗油性能、缓速和总溶蚀性能,以及动态驱替延效性能。试验得出:延效酸对钙蒙脱石和现场垢样的溶蚀率分别可达45.23%和86.08%,对二氧化硅的溶蚀率仅0.22%;抑制结垢能力强;酸液表面张力12.77 mN/m;延效酸与岩粉分别反应2,4和6 h后溶蚀率可达9.39%、13.64%和24.54%;动态驱替酸化后注入20倍孔隙体积的水,渗透率增大倍数仍然稳定在1.8~1.9倍。注水井延效酸化技术在渤海油田应用14井次,应用效果显著。研究表明,延效酸具有综合解堵效果好、保护骨架、缓速性好、总溶蚀率高和延效性好等优点,具有推广应用价值。Abstract: In response to the deteriorating reacidizing of water injection wells in the Bohai Oilfield, a study on the prolonged-effect acidizing technology for water injection wells was carried out. The prolonged-effect acid was prepared by adding an anti-swelling agent and surfactant to three kinds of deep retarded acid in low concentrations that enhanced the reservoir protection capability of acid. At 60 ℃, the as-prepared acid was tested with respect to its dissolution on field scale samples, calcium montmorillonite, and silica, its scaling inhibition of injected water, oil-washing performance, retardation, total dissolution performance, and prolonged effect with dynamic displacement. The results showed that the dissolution rate of the prolonged-effect acid on the calcium montmorillonite and scale samples could reach 45.23% and 86.08% respectively, while that on silica was only 0.22%. The acid had strong inhibition of scaling and a surface tension of 12.77 mN/m. Its dissolution rate on rock powder could reach 9.39%, 13.64%, and 24.54% after 2, 4, and 6 h, respectively. And after dynamic displacement, the increase in the permeability after the injection of water 20 times the pore volume remained at 1.8–1.9 times. The proposed technology was applied to 14 wells in the Bohai Oilfield, achieving good results. The results showed that the prolonged-effect acid, with a high total dissolution rate, performed well in unblocking the water injection wells, protecting the framework, retarding the reaction of acid and rock and prolonging effect, which makes it worthy of wide application.
-
Keywords:
- reacidizing /
- prolonged effect /
- valid period /
- water injection well /
- Bohai Oilfield
-
-
表 1 现场垢样、钙蒙脱石和二氧化硅静态溶蚀试验结果
Table 1 Static dissolution results for the field scale samples, calcium montmorillonite, and silica
试样 反应前质量/g 反应后质量/g 溶蚀率,% 现场垢样 10.439 1.453 86.08 10.088 1.314 86.97 钙蒙脱石 5.003 2.740 45.23 二氧化硅 5.001 4.990 0.22 表 2 酸液延效动态驱替评价试验结果
Table 2 Results for dynamic displacement evaluation of prolonged-effect acid
岩心 酸液 酸化前
渗透率/mD酸化后与酸化前渗透率比值 注入10倍孔隙体积水 注入20倍孔隙体积水 1# 延效酸 58 1.9 1.9 2# 延效酸 54 1.7 1.8 3# 常规酸 55 1.3 1.1 4# 常规酸 7 1.1 0.7 表 3 渤海油田注水井延效酸化技术应用数据
Table 3 Application of prolonged-effect acidizing technology to water injection wells in the Bohai Oilfield
井号 注入压力/MPa 注入量/(m3·d–1) 视吸水指数增大倍数 增注量/m3 有效期/d 酸化前 酸化后 酸化前 酸化后 S-D15 10.0 9.1 141 515 4.0 36 655 150 B-A7 11.0 8.5 501 805 2.1 39 149 142 B-A20 11.7 5.5 254 521 4.4 138 038 567 B-C13 9.3 6.0 509 530 1.6 59 003 322 K-A14 8.9 2.5 370 541 5.2 88 859 581 S-C41 9.9 0.9 334 594 19.6 201 289 673 B-A4 9.0 5.0 43 509 21.3 96 404 228 P-D50 6.0 5.9 350 576 1.7 5 475 40 Q-P1 11.0 3.0 254 377 5.4 125 659 346 B-A4-2 9.0 3.0 306 520 5.1 35 099 273 K-A19 11.0 5.5 251 254 2.0 15 487 258 K-A20 12.6 6.0 504 557 2.3 11 592 118 K-A9 12.0 4.2 466 477 2.9 10 842 211 K-A8 10.0 4.0 720 603 2.1 2 480 164 平均 3.2 61 859 288 表 4 B-C13井3次酸化效果对比
Table 4 Comparison among three applications of acidizing in Well B-C13
酸化次序 酸液 酸液用量/ m3 注入压力/MPa 注入量/(m3·d–1) 有效期/d 酸化前 酸化后 酸化前 酸化后 1 多氢酸 65 9.8 0 164 528 63 2 氟硼酸 60 11.4 9.8 268 450 62 3 延效酸 28 9.3 6.0 509 503 322 -
[1] 王国壮,梁承春,孙招锋,等. 红河油田长6特低渗油藏多元复合酸降压增注技术[J]. 石油钻探技术,2016,44(4):96–101. WANG Guozhuang, LIANG Chengchun, SUN Zhaofeng, et al. Decompression and augmented injection technology with polybasic recombination acid for Chang-6 ultra-low permeability reservoir in Honghe Oilfield[J]. Petroleum Drilling Techniques, 2016, 44(4): 96–101.
[2] 李进,王昆剑,韩耀图,等. 渤海油田注水井酸化效果预测评价方法[J]. 钻井液与完井液,2019,36(4):506–511. doi: 10.3969/j.issn.1001-5620.2019.04.020 LI Jin, WANG Kunjian, HAN Yaotu, et al. Methods of predicting and evaluating effect of acidizing job of water injectors in Bohai Oilfield[J]. Drilling Fluid & Completion Fluid, 2019, 36(4): 506–511. doi: 10.3969/j.issn.1001-5620.2019.04.020
[3] 程兴生,舒玉华,陈伟,等. 桩104区块重复酸化增注工作液优选[J]. 钻井液与完井液,1998,15(3):17–20. CHENG Xingsheng, SHU Yuhua, CHEN Wei, et al. Optimization of an acidizing fluid in Zhuang 104 Block[J]. Drilling Fluid & Completion Fluid, 1998, 15(3): 17–20.
[4] 舒玉华,张汝生,蒋卫东. 轮南油田超深井重复酸化增注工作液[J]. 钻井液与完井液,1999,16(1):12–14. SHU Yuhua, ZHANG Rusheng, JIANG Weidong. The working fluid of reacidzing and stimulation of injection for super-deep well in Lunnan Oilfield[J]. Drilling Fluid & Completion Fluld, 1999, 16(1): 12–14.
[5] 刘淑萍,高瑞民,刘亚勇,等. 文留油田低渗透砂岩储层重复酸化用酸液及其应用[J]. 油田化学,2004,21(2):107–109, 102. LIU Shuping, GAO Ruimin, LIU Yayong, et al. Acidizing fluid for repeated acidization stimulation of low permeable reservoirs in Wenliu Oil Fields and its application[J]. Oilfield Chemistry, 2004, 21(2): 107–109, 102.
[6] 吕宝强,李向平,李建辉,等. 我国重复酸化酸液体系的应用[J]. 油田化学,2014,31(1):136–140. LYU Baoqiang, LI Xiangping, LI Jianhui, et al. Application situation of reacidizing system in China[J]. Oilfield Chemistry, 2014, 31(1): 136–140.
[7] 孙林,孟向丽,蒋林宏,等. 渤海油田注水井酸化低效对策研究[J]. 特种油气藏,2016,23(3):144–147. doi: 10.3969/j.issn.1006-6535.2016.03.035 SUN Lin, MENG Xiangli, JIANG Linhong, et al. Countermeasures of inefficient acidification in water injection wells of Bohai Oilfield[J]. Special Oil & Gas Reservoirs, 2016, 23(3): 144–147. doi: 10.3969/j.issn.1006-6535.2016.03.035
[8] 易飞,赵秀娟,刘文辉,等. 渤海油田注水井解堵增注技术[J]. 石油钻采工艺,2004,26(5):53–56. doi: 10.3969/j.issn.1000-7393.2004.05.014 YI Fei, ZHAO Xiujuan, LIU Wenhui, et al. Plugging removal and injection enhancement technology for the water injection wells in Bohai Oilfield[J]. Oil Drilling & Production Technology, 2004, 26(5): 53–56. doi: 10.3969/j.issn.1000-7393.2004.05.014
[9] 景步宏. 有机多元酸(SY)缓速及防沉淀性能研究[J]. 石油钻探技术,2009,37(3):103–106. doi: 10.3969/j.issn.1001-0890.2009.03.026 JING Buhong. Retardation and deposition control mechanism of organic multivariate acid (SY)[J]. Petroleum Drilling Techniques, 2009, 37(3): 103–106. doi: 10.3969/j.issn.1001-0890.2009.03.026
[10] 刘义刚,陈征,孟祥海,等. 渤海油田分层注水井电缆永置智能测调关键技术[J]. 石油钻探技术,2019,47(3):133–139. doi: 10.11911/syztjs.2019044 LIU Yigang, CHEN Zheng, MENG Xianghai, et al. Cable implanted intelligent injection technology for separate injection wells in Bohai Oilfield[J]. Petroleum Drilling Techniques, 2019, 47(3): 133–139. doi: 10.11911/syztjs.2019044
[11] 孙林,杨万有,李旭光,等. 海上油田爆燃压裂技术研究与现场试验[J]. 石油钻探技术,2019,47(5):91–96. doi: 10.11911/syztjs.2019087 SUN Lin, YANG Wanyou, LI Xuguang, et al. Research and field test of deflagration fracturing technology in offshore oilfields[J]. Petroleum Drilling Techniques, 2019, 47(5): 91–96. doi: 10.11911/syztjs.2019087
[12] 邓建明. 渤海油田低产低效井综合治理技术体系现状及展望[J]. 中国海上油气,2020,32(3):111–117. DENG Jianming. Status and prospect comprehensive treatment technologies for low production and low efficiency wells in Bohai Oilfield[J]. China Offshore Oil and Gas, 2020, 32(3): 111–117.
[13] 赵立强,陈祥,山金城,等. 注水井螯合酸复合解堵体系研究与应用[J]. 西南石油大学学报(自然科学版),2020,42(3):123–131. ZHAO Liqiang, CHEN Xiang, SHAN Jincheng, et al. Research and application of chelating acid blocking removal system for injection wells[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2020, 42(3): 123–131.
[14] 张丽平,张璐,兰夕堂,等. 非酸解堵技术在渤海油田的应用[J]. 钻井液与完井液,2018,35(2):116–121. doi: 10.3969/j.issn.1001-5620.2018.02.019 ZHANG Liping, ZHANG Lu, LAN Xitang, et al. Application of non-acid block removing technology in Bohai Oilfield[J]. Drilling Fluid & Completion Fluid, 2018, 35(2): 116–121. doi: 10.3969/j.issn.1001-5620.2018.02.019
[15] 刘玉国,贾培锋,陈刚,等. 疏松砂岩油藏水平井均衡酸洗工艺[J]. 断块油气田,2019,26(6):805–809. LIU Yuguo, JIA Peifeng, CHEN Gang, et al. Uniform acidizing technology for horizontal wells in unconsolidated sandstone reservoirs[J]. Fault-Block Oil & Gas Field, 2019, 26(6): 805–809.
[16] BENNETT P C. Quartz dissolution in organic-rich aqueous systems[J]. Geochimica et Cosmochimica Acta, 1991, 55(7): 1781–1797. doi: 10.1016/0016-7037(91)90023-X
[17] BLAKE R E, WLAKEALTER L M. Kinetics of feldspar and quartz dissolution at 70~80 ℃ and near-neutral pH: effects of organic acids and NaCl[J]. Geochimica et Cosmochimica Acta, 1999, 63(13/14): 2043–2059.
[18] 陈传平,固旭,周苏闽,等. 不同有机酸对矿物溶解的动力学实验研究[J]. 地质学报,2008,82(7):1007–1012. doi: 10.3321/j.issn:0001-5717.2008.07.019 CHEN Chuanping, GU Xu, ZHOU Sumin, et al. Experimental research on dissolution dynamics of main minerals in several aqueous organic acid solutions[J]. Acta Geologica Sinica, 2008, 82(7): 1007–1012. doi: 10.3321/j.issn:0001-5717.2008.07.019
[19] 杨乾隆,李立标,陶思羽,等. 注水井不动管柱螯合酸脉冲式注入酸化增注技术[J]. 石油钻探技术,2018,46(5):90–94. YANG Qianlong, LI Libiao, TAO Siyu, et al. Chelate acid pulse injection and acidizing stimulation technology for immobilized injecting well string[J]. Petroleum Drilling Techniques, 2018, 46(5): 90–94.
[20] 孙林,杨军伟,周伟强,等. 一种适合海上砂岩油田的单段塞活性酸体系[J]. 钻井液与完井液,2016,33(1):97–101. SUN Lin, YANG Junwei, ZHOU Weiqiang, et al. Acidizing offshore sandstone reservoir with a single slug active acid system[J]. Drilling Fluid & Completion Fluid, 2016, 33(1): 97–101.
-
期刊类型引用(9)
1. 冯奇,蒋官澄,张朔,黄胜铭,王全得,王文卓. 滑溜水压裂液用超疏水型多功能减阻剂制备及应用. 钻井液与完井液. 2024(03): 405-413 . 百度学术
2. 刘红磊,周林波,陈作,薄启炜,马玉生. 中国石化页岩气电动压裂技术现状及发展建议. 石油钻探技术. 2023(01): 62-68 . 本站查看
3. 王玉芳,翟刚毅,胡志方,李娟,张云枭,康海霞,张家政. 湖北宜昌震旦系陡山沱组储层特征及复杂体积压裂效果评价. 地质学报. 2022(04): 1447-1459 . 百度学术
4. 岑涛,夏海帮,雷林. 渝东南常压页岩气压裂关键技术研究与应用. 油气藏评价与开发. 2020(05): 70-76 . 百度学术
5. 王玉芳,翟刚毅,王劲铸,张云枭. 四川盆地及周缘龙马溪组页岩产气效果影响因素. 地质力学学报. 2017(04): 540-547 . 百度学术
6. 王玉芳,翟刚毅,包书景,周志,宋腾,李浩涵. 鄂阳页1井陡山沱组页岩储层含气性及可压性评价. 中国矿业. 2017(06): 166-172 . 百度学术
7. 王玉海,包凯,陆俊华,黄树新,郑威. 彭水区块气举排水采气技术研究与应用. 重庆科技学院学报(自然科学版). 2016(03): 78-81 . 百度学术
8. 李红梅. 微地震监测技术在非常规油气藏压裂效果综合评估中的应用. 油气地质与采收率. 2015(03): 129-134 . 百度学术
9. 付继彤. 水平井高压水射流泡沫酸洗工艺应用. 油气地质与采收率. 2015(05): 123-126 . 百度学术
其他类型引用(0)