随钻前视声波测井钻头前方声场特征研究

杨书博, 乔文孝, 赵琪琪, 倪卫宁, 吴金平

杨书博, 乔文孝, 赵琪琪, 倪卫宁, 吴金平. 随钻前视声波测井钻头前方声场特征研究[J]. 石油钻探技术, 2021, 49(2): 113-120. DOI: 10.11911/syztjs.2021020
引用本文: 杨书博, 乔文孝, 赵琪琪, 倪卫宁, 吴金平. 随钻前视声波测井钻头前方声场特征研究[J]. 石油钻探技术, 2021, 49(2): 113-120. DOI: 10.11911/syztjs.2021020
YANG Shubo, QIAO Wenxiao, ZHAO Qiqi, NI Weining, WU Jinping. The Characteristics of the Acoustic Field Ahead of the Bit in “Look-Ahead” Acoustic Logging While Drilling[J]. Petroleum Drilling Techniques, 2021, 49(2): 113-120. DOI: 10.11911/syztjs.2021020
Citation: YANG Shubo, QIAO Wenxiao, ZHAO Qiqi, NI Weining, WU Jinping. The Characteristics of the Acoustic Field Ahead of the Bit in “Look-Ahead” Acoustic Logging While Drilling[J]. Petroleum Drilling Techniques, 2021, 49(2): 113-120. DOI: 10.11911/syztjs.2021020

随钻前视声波测井钻头前方声场特征研究

基金项目: 国家自然科学基金项目“海相深层高温高压钻完井工程基础理论及控制方法”(编号:U19B6003-05)、国家重点研发计划项目“复杂油气智能钻井理论与方法”(编号:2019YFA0708301)联合资助
详细信息
    作者简介:

    杨书博(1994—),男,河南开封人,2014年毕业于中国石油大学(华东)勘查技术与工程专业,2020年获中国石油大学(北京)地质资源与地质工程专业博士学位,助理研究员,主要从事声波测井正反演、随钻测量编解码和地质导向等方面的研究工作。E-mail:yangsb.sripe@sinopec.com。

  • 中图分类号: P631.8+1

The Characteristics of the Acoustic Field Ahead of the Bit in “Look-Ahead” Acoustic Logging While Drilling

  • 摘要: 现有声波测井仪器无法满足前视探测需求,为此开展了基于相控阵技术的随钻前视声波测井技术研究。采用相控线阵声波辐射器和相控圆弧阵声波接收站,分别实现声波能量的定向辐射和扫描接收;利用有限差分算法,分别模拟了随钻条件下钻头前方存在一个地层界面时的单极和相控阵声波测井响应。模拟结果表明,由于井底散射的影响,随钻前视声波测井的波场比常规反射声波测井的声场更为复杂;与单极声波辐射器相比,相控线阵声波辐射器能够定向增强辐射到钻头前方地层中的声波能量,可以显著增强P-P回波的幅度;与单极声波接收器相比,通过统计相控圆弧阵声波接收站扫描接收到的不同方位P-P回波的幅度,可以近似判断钻前地层界面的方位。研究结果验证了利用相控阵声波测井技术探测钻前地质异常体的可行性,为后续工业样机的开发提供了理论依据。
    Abstract: As the existing acoustic logging tools cannot meet the requirements of "look-ahead" detection, the research on “look-ahead” acoustic logging-while-drilling (LWD) was performed based on the phased array technology. The directional radiation and scanning reception of acoustic energy were realized by the linear phased array (LPA) acoustic wave radiator and arcuate phased array (APA) acoustic receiver stations. The responses of monopole and phased array acoustic logging with a formation interface ahead of the drill bit are numerically simulated by the finite-difference algorithm. The results showed that the acoustic fields of “look-ahead” acoustic LWD are more complex than those of conventional acoustic reflection logging, because of the wave scattering at the well bottom. Compared with the monopole acoustic radiator, the amplitude of P-P echo can be significantly enhanced by directionally enhancing the acoustic energy radiated into the formation ahead of the drill bit with LPA acoustic wave radiator. Compared with the monopole acoustic receiver, the APA acoustic receiver station can approximately determine the azimuth of the formation interface ahead of the drill bit by analyzing the amplitude distribution of P-P echo waves in the scanning reception waveforms. The research results confirmed that detecting geological anomalies ahead of the drill bit with phased array acoustic logging is feasible, and it can provide a theoretical basis for the development of industrial prototypes.
  • 图  1   相控阵声波测井仪器结构示意

    Figure  1.   Schematic diagram of the phased array acoustic logging tool

    图  2   相控阵原理示意

    Figure  2.   Schematic diagram of phased array principle

    图  3   随钻前视声波测井计算模型示意

    Figure  3.   Calculation model of “look-ahead” acoustic LWD

    图  4   不同时刻的波场快照

    Figure  4.   Snapshots of wave fields at different times

    图  5   不同源距下相控阵测量的接收波形

    Figure  5.   Received waveforms at different offsets in phased array measurement

    图  6   源距为3.00 m时单极测量和相控阵测量的井孔直达波与回波波形

    Figure  6.   Direct and echo waveforms in the monopole and phased array measurements at an offset of 3.00 m

    图  7   源距为3.00 m时单极测量的回波波形和相控阵测量的回波波形

    Figure  7.   Comparison of echo waveforms in the monopole and phased array measurements at an offset of 3.00 m

    图  8   不同源距下相控圆弧阵声波接收站的独立接收回波波形

    Figure  8.   Individual-reception echo waveforms of APA acoustic receiver stations at different offsets

    图  9   不同源距下独立接收P-P回波最大幅度随方位角的分布曲线

    Figure  9.   Distribution curves of maximum amplitude for individual-reception P-P echo waves with azimuths at different offsets

    图  10   不同源距相控圆弧阵声波接收站的扫描接收回波波形

    Figure  10.   Scanning-reception echo waveforms of APA acoustic receiver stations at different offsets

    图  11   不同源距下扫描接收P-P回波最大幅度随方位角的分布曲线

    Figure  11.   Distribution curves of maximum amplitude for scanning-reception P-P echo waves with azimuths at different offsets

    表  1   计算模型中各介质参数

    Table  1   Parameters of each media in calculation model

    类型纵波波速/(m·s−1)横波波速/(m·s−1)密度/(kg·m−3)外半径/m
    流体1 500 01 0000.027
    钻铤5 8603 1307 8000.090
    流体1 500 01 0000.117
    地层12 7001 2002 000
    地层24 5002 6002 500
    下载: 导出CSV

    表  2   接收波形的传播路径及形式

    Table  2   Transmission paths and forms of received waveforms

    波类型传播路径传播形式
    TR从声源直接传播至接收器钻铤波、滑行纵波、内斯通利波、外斯通利波
    TBR首先从声源传播至井底钻铤波、滑行纵波、内斯通利波、外斯通利波
    再从井底传播至接收器钻铤波、滑行纵波、内斯通利波、外斯通利波
    TIR首先从声源传播至地层界面地层纵波、地层横波
    再从地层界面传播至接收器地层纵波、地层横波
    TBIR首先从声源传播至井底钻铤波、滑行纵波、内斯通利波、外斯通利波
    然后从井底传播至地层界面地层纵波、地层横波
    最后从地层界面传播至接收器地层纵波、地层横波
    TIBR首先从声源传播至地层界面地层纵波、地层横波
    然后从地层界面传播至井底地层纵波、地层横波
    最后从井底传播至接收器钻铤波、滑行纵波、内斯通利波、外斯通利波
    下载: 导出CSV
  • [1] 马永生,蔡勋育,赵培荣. 石油工程技术对油气勘探的支撑与未来攻关方向思考:以中国石化油气勘探为例[J]. 石油钻探技术,2016,44(2):1–9.

    MA Yongsheng, CAI Xunyu, ZHAO Peirong. The support of petroleum engineering technologies in trends in oil and gas exploration and development: case study on oil and gas exploration in Sinopec[J]. Petroleum Drilling Techniques, 2016, 44(2): 1–9.

    [2] 王敏生,光新军,皮光林,等. 低油价下石油工程技术创新特点及发展方向[J]. 石油钻探技术,2018,46(6):1–8.

    WANG Minsheng, GUANG Xinjun, PI Guanglin, et al. The characteristics of petroleum engineering technology design and innovation in a low oil price environment[J]. Petroleum Drilling Techniques, 2018, 46(6): 1–8.

    [3] 房超,项德贵,赵庆,等. 地质导向软件发展现状、趋势及国产化建议[J]. 石油钻采工艺,2020,42(4):385–392.

    FANG Chao, XIANG Degui, ZHAO Qing, et al. Development status and trend of geosteering software and the suggestions for its localization[J]. Oil Drilling & Production Technology, 2020, 42(4): 385–392.

    [4] 林昕,苑仁国,韩雪银,等. 随钻地质导向智能决策的实现与应用[J]. 石油钻采工艺,2020,42(1):1–5.

    LIN Xin, YUAN Renguo, HAN Xueyin, et al. Realization and application of the intelligent geosteering decision making while drilling[J]. Oil Drilling & Production Technology, 2020, 42(1): 1–5.

    [5] 史鸿祥,李辉,郑多明,等. 基于随钻地震测井的地震导向钻井技术:以塔里木油田哈拉哈塘区块缝洞型储集体为例[J]. 石油勘探与开发,2016,43(4):662–668.

    SHI Hongxiang, LI Hui, ZHENG Duoming, et al. Seismic guided drilling technique based on seismic while drilling (SWD): a case study of fracture-cave reservoirs of Halahatang Block, Tarim Oilfield, NW China[J]. Petroleum Exploration and Development, 2016, 43(4): 662–668.

    [6] 路保平,袁多,吴超,等. 井震信息融合指导钻井技术[J]. 石油勘探与开发,2020,47(6):1227–1234.

    LU Baoping, YUAN Duo, WU Chao, et al. A drilling technology guided by well-seismic information integration[J]. Petroleum Exploration and Development, 2020, 47(6): 1227–1234.

    [7] 高永德,刘鹏,杜超,等. 随钻地震技术在莺歌海盆地高温高压地层钻井中的应用[J]. 石油钻探技术,2020,48(4):63–71.

    GAO Yongde, LIU Peng, DU Chao, et al. The application of seismic while drilling in high temperature, high pressure reservoirs of the Yinggehai Basin[J]. Petroleum Drilling Techniques, 2020, 48(4): 63–71.

    [8] 路保平,倪卫宁. 高精度随钻成像测井关键技术[J]. 石油钻探技术,2019,47(3):148–155. doi: 10.11911/syztjs.2019060

    LU Baoping, NI Weining. The key technologies of high precision imaging logging while drilling[J]. Petroleum Drilling Techniques, 2019, 47(3): 148–155. doi: 10.11911/syztjs.2019060

    [9]

    WANG Lei, FAN Yiren. Fast inversion of logging while drilling azimuthal resistivity measurements for geosteering and formation evaluation[J]. Journal of Petroleum Science and Engineering, 2019, 176: 342–351. doi: 10.1016/j.petrol.2019.01.067

    [10]

    WANG Lei, DENG Shaogui, ZHANG Pan, et al. Detection performance and inversion processing of logging-while-drilling extra-deep azimuthal resistivity measurements[J]. Petroleum Science, 2019, 16: 1015–1027.

    [11] 李亨,刘迪仁,倪小威,等. 钻井液侵入情况下随钻电磁波电阻率测井的响应[J]. 断块油气田,2019,26(5):675–680.

    LI Heng, LIU Diren, NI Xiaowei, et al. Logging responses of electromagnetic wave resistivity while drilling with drilling fluid intrusion[J]. Fault-Block Oil & Gas Field, 2019, 26(5): 675–680.

    [12] 杨震,于其蛟,马清明. 基于拟牛顿法的随钻方位电磁波电阻率仪器响应实时反演与现场试验[J]. 石油钻探技术,2020,48(3):120–126. doi: 10.11911/syztjs.2020025

    YANG Zhen, YU Qijiao, MA Qingming. Real time inversion and field test of LWD azimuthal electromagnetic waves based on quasi-Newton method[J]. Petroleum Drilling Techniques, 2020, 48(3): 120–126. doi: 10.11911/syztjs.2020025

    [13] 黄明泉,杨震. 随钻超深电磁波仪器探测深度及响应特征模拟[J]. 石油钻探技术,2020,48(1):114–119. doi: 10.11911/syztjs.2019132

    HUANG Mingquan, YANG Zhen. Simulation to determine depth of detection and response characteristics while drilling of an ultra-deep electromagnetic wave instrument[J]. Petroleum Drilling Techniques, 2020, 48(1): 114–119. doi: 10.11911/syztjs.2019132

    [14]

    TANG Xiaoming. Imaging near-borehole structure using directional acoustic-wave measurement[J]. Geophysics, 2004, 69(6): 1378–1386. doi: 10.1190/1.1836812

    [15]

    TANG Xiaoming, PATTERSON D J. Single-well S-wave imaging using multicomponent dipole acoustic-log data[J]. Geophysics, 2009, 74(6): WCA211–WCA223. doi: 10.1190/1.3227150

    [16]

    WANG Hua, TAO Guo, SHANG Xuefeng. A method to determine the strike of interface outside of borehole by monopole borehole acoustic reflections[J]. Journal of Petroleum Science and Engineering, 2015, 133: 304–312.

    [17]

    YANG Shubo, QIAO Wenxiao, CHE Xiaohua. Numerical simulation of acoustic fields in formation generated by linear phased array acoustic transmitters during logging while drilling[J]. Journal of Petroleum Science and Engineering, 2019, 182: 106184. doi: 10.1016/j.petrol.2019.106184

    [18]

    YANG Shubo, QIAO Wenxiao, CHE Xiaohua, et al. Numerical simulation of acoustic reflection logging while drilling based on a cylindrical phased array acoustic receiver station[J]. Journal of Petroleum Science and Engineering, 2019, 183: 106467. doi: 10.1016/j.petrol.2019.106467

    [19] 王菁,张秀梅. 偶极声波实现钻前地质探测的方法研究[J]. 应用声学,2015,34(6):539–546.

    WANG Jing, ZHANG Xiumei. Study on the method of formation detection ahead of the drill-bit using downhole dipole source[J]. Journal of Applied Acoustics, 2015, 34(6): 539–546.

    [20]

    PAN Yue, HE Xiao, CHEN Hao, et al. Reflection signals and wellbore scattering waves in acoustic logging while drilling[J]. Journal of Geophysics and Engineering, 2020, 17(3): 552–561.

    [21] 杨书博,乔文孝,车小花. 基于MPI和OpenMP的三维弹性波方程混合并行有限差分算法[J]. 应用声学,2018,37(1):75–82. doi: 10.11684/j.issn.1000-310X.2018.01.011

    YANG Shubo, QIAO Wenxiao, CHE Xiaohua. A hybrid parallel finite difference algorithm for 3D elastic wave equation based on MPI and OpenMP[J]. Journal of Applied Acoustics, 2018, 37(1): 75–82. doi: 10.11684/j.issn.1000-310X.2018.01.011

  • 期刊类型引用(10)

    1. 郝小龙,高国寅,谭海峰,杨诚,李岳桓. 基于自适应差分脉码调制的远探测声波测井数据井下压缩算法. 石油钻探技术. 2024(06): 148-155 . 本站查看
    2. 喻著成,许期聪,邱儒义,雷鸣,周箩鱼. 随钻声波井下全景成像技术现状及展望. 钻采工艺. 2023(03): 171-175 . 百度学术
    3. 王伟,郝小龙,周静,杨诚,高国寅. 随钻声波测井井下算法测试系统数据交换接口设计. 西安石油大学学报(自然科学版). 2023(06): 118-123+132 . 百度学术
    4. 李辉,谭忠健,耿长喜,邓津辉,张志虎,张立刚,李文元,李浩. 基于随钻录井工程参数的变质岩潜山储层物性预测方法及应用. 特种油气藏. 2023(06): 10-15 . 百度学术
    5. 刘西恩,赵腾,车小花. 基于声波垂直入射于井壁的随钻远探测方法及初步数值模拟. 测井技术. 2023(05): 542-550+577 . 百度学术
    6. 简旭,李皋,王军,韩旭,黄兵,王松涛. 气体钻井声波超前测距方法与数值模拟. 石油钻探技术. 2022(03): 132-138 . 本站查看
    7. 刘西恩,孙志峰,仇傲,李杰,罗博,彭凯旋,罗瑜林. 随钻四极子声波测井仪的设计及试验. 石油钻探技术. 2022(03): 125-131 . 本站查看
    8. 郝小龙,高国寅,王伟,杨诚. 声波测井井下处理算法开发的上位机软件设计. 石油化工应用. 2022(09): 101-104 . 百度学术
    9. 李皋,黎洪志,简旭,王军,王松涛. 气体钻井超前探测震源工具设计及力学性能模拟研究. 石油钻探技术. 2022(06): 14-20 . 本站查看
    10. 孙志峰,卢华涛,李国梁. 随钻声波测井关键技术研究进展. 科学技术与工程. 2022(36): 15849-15859 . 百度学术

    其他类型引用(2)

图(11)  /  表(2)
计量
  • 文章访问数:  610
  • HTML全文浏览量:  219
  • PDF下载量:  167
  • 被引次数: 12
出版历程
  • 收稿日期:  2020-09-09
  • 修回日期:  2020-12-23
  • 网络出版日期:  2021-01-04
  • 刊出日期:  2021-04-08

目录

    /

    返回文章
    返回