弹性孔网材料的堵漏性能评价及现场应用

李公让, 于雷, 刘振东, 李卉, 明玉广

李公让, 于雷, 刘振东, 李卉, 明玉广. 弹性孔网材料的堵漏性能评价及现场应用[J]. 石油钻探技术, 2021, 49(2): 48-53. DOI: 10.11911/syztjs.2021008
引用本文: 李公让, 于雷, 刘振东, 李卉, 明玉广. 弹性孔网材料的堵漏性能评价及现场应用[J]. 石油钻探技术, 2021, 49(2): 48-53. DOI: 10.11911/syztjs.2021008
LI Gongrang, YU Lei, LIU Zhendong, LI Hui, MING Yuguang. The Evaluation and Application of Lost Circulation Control by Elastic Mesh Materials[J]. Petroleum Drilling Techniques, 2021, 49(2): 48-53. DOI: 10.11911/syztjs.2021008
Citation: LI Gongrang, YU Lei, LIU Zhendong, LI Hui, MING Yuguang. The Evaluation and Application of Lost Circulation Control by Elastic Mesh Materials[J]. Petroleum Drilling Techniques, 2021, 49(2): 48-53. DOI: 10.11911/syztjs.2021008

弹性孔网材料的堵漏性能评价及现场应用

基金项目: 中国石化科技攻关项目“基于弹性孔网材料的堵漏剂研制及应用”(编号:JP18038)部分研究内容
详细信息
    作者简介:

    李公让(1970—),男,山东临沂人,1992 年毕业于华东化工学院有机化工专业,2011年获中国石油大学(华东)油气井工程专业博士学位,教授级高级工程师,主要从事钻井液新技术开发及应用方面的研究工作。E-mail:ligr92.ossl@sinopec.com。

  • 中图分类号: TE28+3

The Evaluation and Application of Lost Circulation Control by Elastic Mesh Materials

  • 摘要: 现有常规桥浆堵漏材料存在裂缝适应性不强、封堵层浅和堵漏成功率较低等问题。为此,优选了不同规格弹性孔网材料,进行了压缩回弹性、抗拉强度和抗温性等性能评价试验,优选了综合性能最佳的弹性孔网材料,并考察了弹性孔网材料尺寸、形状和加量对堵漏效果的影响。试验结果表明,1#弹性孔网材料的50%压缩永久变形率低于10%,抗拉强度为150 kPa,抗温能力达150 ℃,适合用作堵漏材料;正方体形弹性孔网材料可滞留在裂缝内,堵漏效果较好,尺寸为5.0 mm×5.0 mm×5.0 mm的弹性孔网材料对尺寸为5.0 mm×4.0 mm的楔形缝封堵效果最优;弹性孔网材料加量为0.08%时的堵漏效果最好。弹性孔网材料在多口井进行了现场堵漏,一次堵漏成功率达86.7%。研究表明,弹性孔网材料对裂缝性地层具有较好的适应性和堵漏效果,能够解决地层漏失问题。
    Abstract: The existing conventional bridge slurry plugging materials have problems such as weak fracture adaptability, shallow plugging layer and low plugging success rate. For this reason, different specifications of elastic mesh materials were selected for evaluation tests of compressive resilience, tensile strength and temperature resistance, and the one with the optimal performance was identified. In addition, we investigated the influence of sizes, shapes and concentrations of the elastic mesh material on plugging efficacy. Experimental results indicate that elastic mesh material marked No.1 is suitable for plugging, due to its low permanent compressive rate of 10% at 50% of its compressive strength, high tensile strength of 150 kPa and high temperature resistance of 150 °C. The cubic elastic mesh material can remain in fractures, and thus presents excellent performance in plugging. The elastic mesh material in the size of 5.0 mm×5.0 mm×5.0 mm has the best plugging performance in wedge-shaped fracture in the size of 5.0 mm × 4.0 mm. In addition, the optimal concentration of the elastic mesh material is 0.08%, and the success rate of one-time plugging has reached 86.7% after the elastic mesh material has been applied in multiple wells. The research demonstrated that the elastic mesh material has good adaptability and plugging effect for fractured formations, and can solve the problem of lost circulation.
  • 井漏是影响钻井作业安全的井下复杂情况之一,钻井过程中发生井漏不仅延误钻井周期,同时造成巨大经济损失[1-5]。近年来,随着油气勘探开发的深入,井漏情况日益突出,如川渝的威远–长宁区块、鄂尔多斯盆地北部杭锦旗区块等井漏问题严重,影响了钻井效率与速度。据统计,这些区块绝大部分井的漏失类型为裂缝性漏失。目前,针对裂缝性漏失的堵漏剂主要有桥接型堵漏剂、高失水堵漏剂、暂堵型堵漏剂、膨胀类堵漏剂、水泥速凝类堵漏剂、可固化型堵漏剂和复合材料堵漏剂等类型 [6-9]。其中,桥接型堵漏剂相对其他堵漏剂使用简便,成本较低。但常规桥堵材料多采用核桃壳等架桥颗粒及纤维等填充物,其在高温下易发生碳化,长时间碳化后容易发生堵漏失效,特别是在深层环境中极易发生复漏。同时,常规堵漏材料与裂缝匹配性差,难以有效进入漏层形成封堵,堵漏成功率低[10-13]。针对这一问题,笔者优选了一种高弹性、可压缩的聚氨酯泡沫弹性孔网材料,评价了其堵漏效果,并在威远、彭州和神木等油气田应用了15井次,一次堵漏成功率达86.7%。

    裂缝性漏失地层具有承压能力低和在压力作用下诱导开启闭合的特征。针对裂缝性地层特征及封堵的技术难点,确定选择具有可压缩、高回弹、耐高温的弹性孔网材料作为架桥堵漏材料。弹性孔网材料是一种聚氨酯泡沫,具有开孔的泡孔结构,弹性高,堆积密度小于0.02 g/cm3。考虑钻井液应用情况,筛选了2种材质、9种泡孔规格的聚氨酯泡沫弹性孔网材料(见表1),对其压缩回弹性、抗拉强度和抗温性等性能进行了评价。

    表  1  不同类型弹性孔网材料的泡孔规格
    Table  1.  Specifications of different elastic mesh materials
    编号弹性孔网类型泡孔规格/目
    1#阻燃型12
    2#阻燃型6
    3#阻燃型4
    4#阻燃型2
    5#过滤型8
    6#过滤型6
    7#过滤型2
    8#过滤型10
    9#过滤型4
    下载: 导出CSV 
    | 显示表格

    弹性孔网材料的压缩回弹性能越好,越有利于在井底压差作用下发挥自转向性,进入不同开度的裂缝进行自适应堵漏。参照标准《软质泡沫聚合材料:压缩永久变形的测定》(GB/T 6669—2008)给出的试验方法[14],室内测试了弹性孔网材料的50%压缩永久变形率,结果如图1所示。

    图  1  弹性孔网材料50%压缩永久变形率评价试验结果
    Figure  1.  50% compression set rate evaluation results of elastic mesh materials

    图1可知,1#和2#弹性孔网材料的50%压缩永久变形率均小于10%,其余7种弹性孔网材料的50%压缩永久变形率均大于10%。

    弹性孔网材料要求具有较高的抗拉强度,能承受井下不同应力作用,形成较高强度的致密承压封堵层,增强封堵层的剪切强度。参照标准《软质泡沫聚合材料:拉伸强度和断裂伸长率的测定》(GB/T 6344—2008)给出的试验方法[15],测试了弹性孔网材料的抗拉强度,结果如图2所示。

    图  2  弹性孔网材料抗拉强度评价试验结果
    Figure  2.  Tensile strength of elastic mesh materials

    图2可知,1#和2#弹性孔网材料的抗拉强度分别为150 kPa和137 kPa,其余7种弹性孔网材料的抗拉强度均小于130 kPa,表明1#和2#弹性孔网材料的抗拉强度优于其余7种材料。

    测试弹性孔网材料在钻井液中老化后的质量保留率和抗拉强度保持率,评价其抗温能力。钻井液配方为4.0%膨润土浆+0.3%HV-PAC,取一定质量的弹性孔网材料加入400 mL钻井液中,老化后过10目筛、洗涤并烘干,测量弹性孔网材料老化后的质量和抗拉强度,结果分别见图3图4

    图  3  弹性孔网材料经150 ℃老化后的质量保留率
    Figure  3.  Quality retention rates of elastic mesh materials at 150 °C after aging
    图  4  弹性孔网材料经150 ℃老化后的抗拉强度保持率
    Figure  4.  Tensile strength retention rates of elastic mesh materials at 150 °C after aging

    图3图4可知,150 ℃老化16 h后,1#弹性孔网材料的质量保留率和抗拉强度保持率分别为92.5%和88.4%,其余8种弹性孔网材料的质量保留率和抗拉强度保持率均低于85.0%。实验结果表明,1# 弹性孔网材料的抗温能力可达150 ℃。综合考虑以上试验结果,选择1#弹性孔网材料作为堵漏材料,并开展堵漏性能评价试验。

    利用中国石油大学(华东)自行研制的长裂缝封堵模拟试验装置,评价弹性孔网材料对裂缝的封堵性能。长裂缝封堵模拟试验装置由高温高压钻井液釜体、楔形长裂缝模具夹持器、温度压力测量控制系统及数据采集处理系统组成,工作压力范围0~25 MPa,工作温度范围室温至180 ℃。为了更好地模拟地层裂缝状态和进行堵漏效果评价,裂缝模具设计为两端缝宽不等的楔形,裂缝长度为1 000 mm,楔形长裂缝试验模具包括1.0 mm×0.5 mm,2.0 mm×1.0 mm,3.0 mm×2.0 mm,4.0 mm×3.0 mm和5.0 mm×4.0 mm(表示前端缝宽×后端缝宽)等5种规格,用来模拟不同缝宽的漏层。

    长裂缝封堵模拟实验方法为:1)打开高温高压钻井液釜体,配制2 000 mL堵漏浆倒入釜体内;2)将楔形长裂缝模块装入模具夹持器中,连接围压管线、滤液出口管线和活塞压力管线;3)围压加至15 MPa,加热至实验温度100 ℃;4)打开滤液出口阀,计量漏出的堵漏浆体积,对釜体内堵漏浆加压,快速将压力加至3.5 MPa,计时并记录累计漏失量,计算漏失速率,根据漏失速率优选堵漏材料。

    将优选的1#弹性孔网材料分别加工成正方体、长方体和三棱柱等3种形状(见图5),其尺寸分别为5.0 mm×5.0 mm×5.0 mm(正方体形)、2.0 mm×2.0 mm×5.0 mm(长方体形)和5.0 mm×5.0 mm×5.0 mm(三棱柱形),利用楔形长裂缝试验装置(楔形缝宽为5.0×4.0 mm),考察不同形状的弹性孔网材料对堵漏基浆堵漏性能的影响,结果见表2。其中,实验用堵漏基浆配方为6.0%膨润土浆+0.3%HV-PAC。

    图  5  不同形状的弹性孔网材料
    Figure  5.  Elastic mesh materials in different shapes
    表  2  不同形状弹性孔网材料楔形长裂缝封堵试验结果
    Table  2.  Long wedge-shaped fractures plugged with elastic mesh materials in different shapes
    堵漏浆配方漏失速率/(L·s–1封堵情况
     堵漏基浆0.50
     堵漏基浆+0.08%正方体形弹性孔网材料0.06滞留在裂缝中
     堵漏基浆+0.08%长方体形弹性孔网材料0.40随堵漏浆漏失
     堵漏基浆+0.08%三棱柱形弹性孔网材料0.20少量滞留在裂缝中
    下载: 导出CSV 
    | 显示表格

    表2可知,加入正方体形弹性孔网材料后,漏失速率为0.06 L/s,弹性孔网材料可有效滞留在裂缝内;加入长方体形弹性孔网材料后,漏失速率为0.40 L/s,弹性孔网材料随堵漏浆漏失,无法有效滞留在裂缝中;加入三棱柱形弹性孔网材料后,漏失速率为0.20 L/s,弹性孔网材料随堵漏浆漏失,少量弹性孔网材料滞留在裂缝中。试验结果表明,正方体形弹性孔网材料可有效滞留在裂缝内,堵漏效果较好。

    将弹性孔网材料加工成不同尺寸的正方体形,利用缝宽为5.0 mm×4.0 mm的楔形长裂缝试验装置,考察了不同形状的弹性孔网材料对堵漏性能的影响,结果见表3

    表  3  不同尺寸弹性孔网材料封堵楔形长裂缝试验结果
    Table  3.  Long wedge-shaped fractures plugged with elastic mesh materials in different sizes
    堵漏浆配方漏失速率/(L·s–1封堵情况
     堵漏基浆0.50
     堵漏基浆+0.08% 弹性孔网
    材料(15.0 mm×15.0 mm×15.0 mm)
    0.40封堵缝口
     堵漏基浆+0.08% 弹性孔网
    材料(10.0 mm×10.0 mm×10.0 mm)
    0.10进入裂缝浅
     堵漏基浆+0.08%弹性孔网
    材料(5.0 mm×5.0 mm×5.0 mm)
    0.06进入裂缝深
    下载: 导出CSV 
    | 显示表格

    表3可知,堵漏基浆的漏失速率为0.50 L/s;加入0.08%尺寸为15.0 mm×15.0 mm×15.0 mm的弹性孔网材料后,漏失速率降至0.40 L/s,但由于弹性孔网材料尺寸过大,导致其无法进入裂缝中,堆积在缝口处;加入0.08%尺寸为10.0 mm×10.0 mm×10.0 mm的弹性孔网材料后,漏失速率降至0.10 L/s,弹性孔网材料进入裂缝较浅;加入0.08%尺寸为5.0 mm×5.0 mm×5.0 mm的弹性孔网材料,漏失速率降至0.06 L/s,表明其可进入裂缝较深部位。因此,可根据漏失速率(或裂缝大小)选择合适尺寸的弹性孔网材料,以达到最优的堵漏效果。

    利用缝宽为5.0 mm×4.0 mm的楔形长裂缝试验装置,选用尺寸为5.0 mm×5.0 mm×5.0 mm的正方体形弹性孔网材料,考察了弹性孔网材料加量对堵漏效果的影响,试验结果见表4

    表  4  不同加量弹性孔网材料的长裂缝封堵试验结果
    Table  4.  Long fractures plugged with elastic mesh materials in different concentrations
    堵漏浆配方漏失速率/(L·s–1封堵情况
    堵漏基浆0.50
    堵漏基浆+0.04% 弹性孔网材料0.30进入裂缝中
    堵漏基浆+0.08% 弹性孔网材料0.06进入裂缝中
    堵漏基浆+0.12% 弹性孔网材料0.20封堵缝口
    下载: 导出CSV 
    | 显示表格

    表4可知,加入0.04%弹性孔网材料后,其可进入裂缝中,漏失速率降至0.30 L/s;随着弹性孔网材料加量增大,裂缝中弹性孔网材料的数量显著增多,漏失速率大幅降低;但加入0.12%弹性孔网材料后,由于其加量过大,无法进入裂缝,堆积在缝口处封堵缝口。

    基于弹性孔网材料裂缝封堵试验结果,其裂缝封堵作用机理可概括为以下几个方面(见图6):

    图  6  弹性孔网材料封堵作用示意
    Figure  6.  Plugging function mechanism of elastic mesh material

    1)弹性变形,挤入裂缝。弹性孔网材料在井底压差作用下可发生压缩变形,挤入裂缝,对于不同开度的地层裂缝均具有较强的自适应性。

    2)捕集作用。挤入裂缝的弹性孔网材料在裂缝中可形成一个过滤网,变缝为孔,通过“网兜效应”易于捕获其他类型堵漏材料,形成三维立体封堵隔墙(层),提高堵漏材料在裂缝中的滞留能力,提高堵漏成功率。

    3)提高封堵层承压能力。填充材料在过滤网中不断堆积,封堵域较长,大量弹性孔网材料封堵隔墙协同作用,承担外部载荷,提高了封堵层的致密承压能力[16-18]

    四川盆地彭州区块须家河组、雷口坡组及马鞍塘组地层发生漏速15~38 m3/h的裂缝性漏失,威远区块龙马溪组地层发生漏速52.2 m3/h的裂缝性漏失,陕北神木区块刘家沟组地层发生漏速20 m3/h的裂缝性漏失,应用弹性孔网材料进行堵漏施工后,均一次堵漏成功。截至目前,弹性孔网材料已累计应用15井次,一次堵漏成功13井次,一次堵漏成功率达86.7%。下面以元坝701井为例介绍弹性孔网材料的应用情况。

    元坝701井是位于四川盆地川北坳陷九龙山背斜南的一口评价井,目的层为下二叠统茅口组三段,设计井深6 845.00 m。该区块陆相地层自流井组—须家河组地层中有高压低渗裂缝性气藏,岩性分布比较复杂,砂砾岩储层发育,岩石以灰色钙屑砂岩、碳酸盐为主,且多为钙质胶结,灰质含量较高;高角度裂缝发育,裂缝的发育程度和分布规模不均一;钻井液安全密度窗口窄,常出现井漏、井涌同存的问题。

    元坝701井采用密度为1.96 kg/L的钻井液钻至自流井组东岳庙段3 834.76 m发生漏失,漏速24 m3/h,累计漏失钻井液38.0 m3;短起5柱,配制堵漏浆进行桥浆堵漏,堵漏浆配方为:井浆+4%核桃壳(1.0~3.0 mm)+3%核桃壳(0.5~1.0 mm)+4%酸溶暂堵剂+4%承压封堵剂+2%刚性堵漏剂(2.0~3.0 mm)+2%橡胶颗粒(0.5~1.0 mm)+2%木质纤维素+3%超细碳酸钙。注入堵漏浆后静止堵漏,静止6 h后下钻到底小排量循环不漏,排量提高至正常钻进排量45 L/s时发生漏失,漏速13 m3/h。鉴于即将钻进须家河组高压地层,钻井液密度需提至2.10 kg/L以上,配制40 m3堵漏浆进行承压堵漏,承压堵漏浆配方为:井浆+0.08%弹性孔网材料+5.00%核桃壳(1.0~3.0 mm)+4.00%核桃壳(0.5~1.0 mm)+4.00%酸溶暂堵剂+4.00%承压封堵剂+2.00%刚性堵漏剂(2.0~3.0 mm)+3.00%弹性颗粒+3.00%木质纤维素+5.00%超细碳酸钙。具体施工程序为:光钻杆下至3 700 m,泵入33.0 m3堵漏浆,泵入期间环空返浆,泵注完堵漏浆后替入35.0 m3井浆;然后起钻至3 300 m,关井正挤憋压,累计泵入10次共8.2 m3钻井液,立压保持在6.23 MPa,开井循环不漏失,换算井底压力当量密度最高为2.13 kg/L。

    堵漏成功后更换钻具组合,下钻到底正常钻进排量循环不漏失,钻进至须家河组地层前逐渐将钻井液密度提高至2.12 kg/L,三开顺利钻穿须家河组地层,未发生漏失等井下复杂情况。

    1)弹性孔网材料具有较好的压缩回弹性能,在压差作用下能够挤入裂缝,变缝为孔,增强堵漏材料在裂缝中的滞留能力,提高了裂缝封堵效果。

    2)现场多口井的应用结果表明,弹性孔网材料配合其他填充堵漏材料进行堵漏,对裂缝性漏失的堵漏效果更显著。

    3)弹性孔网材料密度小,现场使用时添加到钻井液中后需长时间搅拌才能混合均匀,建议开展现场施工工艺研究,以提高堵漏时效。

  • 图  1   弹性孔网材料50%压缩永久变形率评价试验结果

    Figure  1.   50% compression set rate evaluation results of elastic mesh materials

    图  2   弹性孔网材料抗拉强度评价试验结果

    Figure  2.   Tensile strength of elastic mesh materials

    图  3   弹性孔网材料经150 ℃老化后的质量保留率

    Figure  3.   Quality retention rates of elastic mesh materials at 150 °C after aging

    图  4   弹性孔网材料经150 ℃老化后的抗拉强度保持率

    Figure  4.   Tensile strength retention rates of elastic mesh materials at 150 °C after aging

    图  5   不同形状的弹性孔网材料

    Figure  5.   Elastic mesh materials in different shapes

    图  6   弹性孔网材料封堵作用示意

    Figure  6.   Plugging function mechanism of elastic mesh material

    表  1   不同类型弹性孔网材料的泡孔规格

    Table  1   Specifications of different elastic mesh materials

    编号弹性孔网类型泡孔规格/目
    1#阻燃型12
    2#阻燃型6
    3#阻燃型4
    4#阻燃型2
    5#过滤型8
    6#过滤型6
    7#过滤型2
    8#过滤型10
    9#过滤型4
    下载: 导出CSV

    表  2   不同形状弹性孔网材料楔形长裂缝封堵试验结果

    Table  2   Long wedge-shaped fractures plugged with elastic mesh materials in different shapes

    堵漏浆配方漏失速率/(L·s–1封堵情况
     堵漏基浆0.50
     堵漏基浆+0.08%正方体形弹性孔网材料0.06滞留在裂缝中
     堵漏基浆+0.08%长方体形弹性孔网材料0.40随堵漏浆漏失
     堵漏基浆+0.08%三棱柱形弹性孔网材料0.20少量滞留在裂缝中
    下载: 导出CSV

    表  3   不同尺寸弹性孔网材料封堵楔形长裂缝试验结果

    Table  3   Long wedge-shaped fractures plugged with elastic mesh materials in different sizes

    堵漏浆配方漏失速率/(L·s–1封堵情况
     堵漏基浆0.50
     堵漏基浆+0.08% 弹性孔网
    材料(15.0 mm×15.0 mm×15.0 mm)
    0.40封堵缝口
     堵漏基浆+0.08% 弹性孔网
    材料(10.0 mm×10.0 mm×10.0 mm)
    0.10进入裂缝浅
     堵漏基浆+0.08%弹性孔网
    材料(5.0 mm×5.0 mm×5.0 mm)
    0.06进入裂缝深
    下载: 导出CSV

    表  4   不同加量弹性孔网材料的长裂缝封堵试验结果

    Table  4   Long fractures plugged with elastic mesh materials in different concentrations

    堵漏浆配方漏失速率/(L·s–1封堵情况
    堵漏基浆0.50
    堵漏基浆+0.04% 弹性孔网材料0.30进入裂缝中
    堵漏基浆+0.08% 弹性孔网材料0.06进入裂缝中
    堵漏基浆+0.12% 弹性孔网材料0.20封堵缝口
    下载: 导出CSV
  • [1] 陈晓华,王翔,冯永超,等. 泾河油田裂缝性致密油藏防漏堵漏技术[J]. 断块油气田,2017,24(2):297–300.

    CHEN Xiaohua, WANG Xiang, FENG Yongchao, et al. Loss prevention and control technology for fractured reservoirs in Jinghe Oilfield[J]. Fault-Block Oil & Gas Field, 2017, 24(2): 297–300.

    [2] 梁文利. 深层页岩气油基钻井液承压堵漏技术[J]. 钻井液与完井液,2018,35(3):37–41.

    LIANG Wenli. Enhancing pressure bearing capacity of formation to control mud losses in deep shale gas drilling with oil base drilling fluids[J]. Drilling Fluid & Completion Fluid, 2018, 35(3): 37–41.

    [3] 张杜杰,金军斌,陈瑜,等. 深部裂缝性致密储层随钻堵漏材料补充时机研究[J]. 特种油气藏,2020,27(6):158–164.

    ZHANG Dujie, JIN Junbin, CHEN Yu, et al. Study on the supplement timing of leakage stoppage materials while drilling for deep fractured tight reservoirs[J]. Special Oil & Gas Reservoirs, 2020, 27(6): 158–164.

    [4] 何选蓬,程天辉,周健,等. 秋里塔格构造带风险探井中秋1井安全钻井关键技术[J]. 石油钻采工艺,2019,41(1):1–7.

    HE Xuanpeng, CHENG Tianhui, ZHOU Jian, et al. Key technologies of safe drilling in Zhongqiu 1 Well, a risk exploration well in Qiulitag Tectonic Belt[J]. Oil Drilling & Production Technology, 2019, 41(1): 1–7.

    [5] 王建龙,徐旺,郭耀,等. 苏里格气田苏25区块水平井钻井关键技术[J]. 长江大学学报(自然科学版),2019,16(7):26–30.

    WANG Jianlong, XU Wang, GUO Yao, et al. Key technology of horizontal well drilling in Block Su25 of Sulige Gas Field[J]. Journal of Yangtze University(Natural Science Edition), 2019, 16(7): 26–30.

    [6] 韩成,罗鸣,杨玉豪,等. 莺琼盆地高温高压窄安全密度窗口钻井关键技术[J]. 石油钻采工艺,2019,41(5):568–572.

    HAN Cheng, LUO Ming, YANG Yuhao, et al. Key drilling technologies for HTHP wells with narrow safety density window in the Yingqiong Basin[J]. Oil Drilling & Production Technology, 2019, 41(5): 568–572.

    [7] 颜帮川,蒋官澄,胡文军,等. 高温延迟交联聚丙烯酰胺凝胶堵漏剂的研究[J]. 钻井液与完井液,2019,36(6):679–682.

    YAN Bangchuan, JIANG Guancheng, HU Wenjun, et al. Study on high temperature delayed crosslinking PAM gel LCM[J]. Drilling Fluid & Completion Fluid, 2019, 36(6): 679–682.

    [8] 刘金华,刘四海,龙大清,等. 明1井交联成膜与化学固结承压堵漏技术[J]. 石油钻探技术,2017,45(2):54–60.

    LIU Jinhua, LIU Sihai, LONG Daqing, et al. Strengthening plugging operations by combining cross-linked film and chemical consolidation in Well Ming-1[J]. Petroleum Drilling Techniques, 2017, 45(2): 54–60.

    [9] 王刚,刘晨超,冯杰,等. 新型高强度承压堵漏吸水膨胀树脂研发与应用[J]. 特种油气藏,2019,26(2):147–151. doi: 10.3969/j.issn.1006-6535.2019.02.027

    WANG Gang, LIU Chenchao, FENG Jie, et al. R&D and application of a new high-Strength pressure-sealing water-swelling resin[J]. Special Oil & Gas Reservoirs, 2019, 26(2): 147–151. doi: 10.3969/j.issn.1006-6535.2019.02.027

    [10] 王波,孙金声,李伟,等. 陕北西部地区裂缝性地层堵漏技术研究与实践[J]. 钻井液与完井液,2020,37(1):9–14.

    WANG Bo, SUN Jinsheng, LI Wei, et al. Study on and practice of lost circulation control technology in drilling fractured formations in west Shaanbei[J]. Drilling Fluid & Completion Fluid, 2020, 37(1): 9–14.

    [11] 何新星,李皋,段慕白,等. 地层裂缝动态变形对堵漏效果的影响研究[J]. 石油钻探技术,2018,46(4):35–39.

    HE Xinxing, LI Gao, DUAN Mubai, ea al. The influence of dynamic deformation of formation fractures on the plugging effect[J]. Petroleum Drilling Techniques, 2018, 46(4): 35–39.

    [12] 李辉,刘华康,何仲,等. 塔河油田碳酸盐岩储层恶性漏失空间堵漏凝胶技术[J]. 钻井液与完井液,2019,36(1):25–28. doi: 10.3969/j.issn.1001-5620.2019.01.005

    LI Hui, LIU Huakang, HE Zhong, et al. Use gel to control severe mud losses in carbonate reservoir formations in Tahe Oilfield[J]. Drilling Fluid & Completion Fluid, 2019, 36(1): 25–28. doi: 10.3969/j.issn.1001-5620.2019.01.005

    [13] 韩成,黄凯文,罗鸣,等. 南海莺琼盆地高温高压井堵漏技术[J]. 石油钻探技术,2019,47(6):15–20. doi: 10.11911/syztjs.2019081

    HAN Cheng, HUANG Kaiwen, LUO Ming, et al. Plugging technology for HTHP wells in the Yingqiong Basin of the South China Sea[J]. Petroleum Drilling Techniques, 2019, 47(6): 15–20. doi: 10.11911/syztjs.2019081

    [14] GB/T 6669—2008 软质泡沫聚合材料: 压缩永久变形的测定[S].

    GB/T 6669—2008 Flexible cellular polymeric materials: determination of compression set[S].

    [15] GB/T 6344—2008 软质泡沫聚合材料: 拉伸强度和断裂伸长率的测定[S].

    GB/T 6344—2008 Flexible cellular polymeric materials: determination of tensile strength and elongation at break[S].

    [16] 陈曾伟. 基于神经网络算法的井下裂缝诊断与堵漏技术[J]. 钻井液与完井液,2019,36(1):20–24. doi: 10.3969/j.issn.1001-5620.2019.01.004

    CHEN Zengwei. Downhole fracture diagnosis and mud loss control technologies bases on neural network algorithm[J]. Drilling Fluid & Completion Fluid, 2019, 36(1): 20–24. doi: 10.3969/j.issn.1001-5620.2019.01.004

    [17] 康毅力,张敬逸,许成元,等. 刚性堵漏材料几何形态对其在裂缝中滞留行为的影响[J]. 石油钻探技术,2018,46(5):26–34.

    KANG Yili, ZHANG Jingyi, XU Chengyuan, et al. The effect of geometrical morphology of rigid lost circulation material on its retention behavior in fractures[J]. Petroleum Drilling Techniques, 2018, 46(5): 26–34.

    [18] 王贵,蒲晓林. 提高地层承压能力的钻井液堵漏作用机理[J]. 石油学报,2010,31(6):1009–1012. doi: 10.7623/syxb201006024

    WANG Gui, PU Xiaolin. Plugging mechanism of drilling fluid by enhancing wellbore pressure[J]. Acta Petrolei Sinica, 2010, 31(6): 1009–1012. doi: 10.7623/syxb201006024

  • 期刊类型引用(5)

    1. 侯向前,张福祥,胡广军,张涛,苗红生. 渗吸驱油用表面活性剂研究现状及展望. 化学工程师. 2024(01): 70-74 . 百度学术
    2. 王维恒,陆俊华,韩倩. 二元复合型泡排剂COG的研制及现场试验. 石油钻探技术. 2022(03): 119-124 . 本站查看
    3. 郑继龙. 分子结构对起泡剂泡沫性能的影响. 应用科技. 2021(02): 116-119 . 百度学术
    4. 魏超平,李伟忠,吴光焕,邓宏伟,孙业恒,闵令元. 稠油降黏剂驱提高采收率机理. 油气地质与采收率. 2020(02): 131-136 . 百度学术
    5. 赵梓平. 驱油用两性离子型双子表面活性剂的合成及应用. 断块油气田. 2019(01): 119-122 . 百度学术

    其他类型引用(2)

图(6)  /  表(4)
计量
  • 文章访问数:  563
  • HTML全文浏览量:  188
  • PDF下载量:  98
  • 被引次数: 7
出版历程
  • 收稿日期:  2020-07-26
  • 修回日期:  2020-12-26
  • 网络出版日期:  2021-01-13
  • 刊出日期:  2021-04-08

目录

/

返回文章
返回