便携式岩屑声波录井系统研制与测试

王志战, 朱祖扬, 李丰波, 张元春, 张卫, 杜焕福

王志战, 朱祖扬, 李丰波, 张元春, 张卫, 杜焕福. 便携式岩屑声波录井系统研制与测试[J]. 石油钻探技术, 2020, 48(6): 109-115. DOI: 10.11911/syztjs.2020141
引用本文: 王志战, 朱祖扬, 李丰波, 张元春, 张卫, 杜焕福. 便携式岩屑声波录井系统研制与测试[J]. 石油钻探技术, 2020, 48(6): 109-115. DOI: 10.11911/syztjs.2020141
WANG Zhizhan, ZHU Zuyang, LI Fengbo, ZHANG Yuanchun, ZHANG Wei, DU Huanfu. Development and Testing of a Portable Acoustic Logging System on Cuttings[J]. Petroleum Drilling Techniques, 2020, 48(6): 109-115. DOI: 10.11911/syztjs.2020141
Citation: WANG Zhizhan, ZHU Zuyang, LI Fengbo, ZHANG Yuanchun, ZHANG Wei, DU Huanfu. Development and Testing of a Portable Acoustic Logging System on Cuttings[J]. Petroleum Drilling Techniques, 2020, 48(6): 109-115. DOI: 10.11911/syztjs.2020141

便携式岩屑声波录井系统研制与测试

基金项目: 国家自然科学基金企业创新发展联合基金项目“海相深层地层孔隙压力形成机理及预测方法探索”(编号:U19B6003-05-01)、国家自然科学基金青年基金项目“弹性波散射衰减对致密砂岩非均质性的响应机制及实验研究”(编号:41704109)、国家科技重大专项“低渗透油气藏高效开发钻完井技术”(编号:2016ZX05021-2)和中石化石油工程公司科技攻关项目“岩屑声波录井技术研究”(编号:SG18-77J)联合资助
详细信息
    作者简介:

    王志战(1969—),男,山东栖霞人,1991年毕业于西北大学岩矿及地球化学专业,2006年获西北大学矿产普查与勘探专业博士学位,教授级高级工程师,主要从事低场核磁共振技术、地层压力随钻预测和监测技术、非常规油气储层快速评价技术方面的研究工作。E-mail:wangzz.sripe@sinopec.com

  • 中图分类号: TE142,TE927

Development and Testing of a Portable Acoustic Logging System on Cuttings

  • 摘要: 为了在钻井过程中实时测量所钻地层的声波速度,在研究岩屑声波录井方法的基础上,研制了高精度的便携式岩屑声波录井系统。设计岩屑声波录井系统时,采用了具有脉冲发生器和示波器功能的一体化电路,并研制了能够快速读取、存储波形数据的软件示波器;采用了超声波透射法,通过超声波探头发射1 MHz频率的超声波,测量声波穿过岩屑样品的纵波速度和横波速度。对该系统进行了实验室比对和实钻井偶极子声波测井比对测试,结果表明,声波速度测量精度大于98.0%、岩屑声波和电缆声波数据一致性大于80.0%。利用该系统不仅可以随钻监测地层异常压力,还可以实时评价岩石的脆性、可压性、可钻性和井壁稳定性。
    Abstract: In order to measure the real-time acoustic velocity in the formation while drilling, a portable acoustic logging system on cuttings with high precision was developed based on the research of acoustic logging on cuttings. In the design of this logging system, integrated circuit of pulse generator and oscilloscope was adopted. In addition, software functioning as oscilloscope that could quickly read and store waveform data was studied for this system. By using the ultrasonic transmission method, an ultrasonic probe was used to emit ultrasonic waves with 1 MHz frequency to measure the P-wave velocity and S-wave velocity of the acoustic wave passing through cuttings samples. Results comparisons were conducted on both the laboratory test and the dipole acoustic logging in actual drilling. The results showed that the accuracy of acoustic velocity measurement was more than 98.0%, and the consistency of acoustic logging data of cuttings and wireline acoustic data was greater than 80.0%. This system could not only be used to monitor abnormal formation pressure while drilling, but also to evaluate rock brittleness, compressibility, drillability and wellbore stability in real time.
  • 图  1   钻井岩屑运移示意

    Figure  1.   Schematic diagram of cuttings migration while drilling

    图  2   岩屑声波录井流程

    Figure  2.   The process of acoustic logging on cuttings

    图  3   岩屑声波录井系统

    Figure  3.   Acoustic logging system on cuttings

    图  4   超声波探头结构

    Figure  4.   Structure of ultrasonic probe

    图  5   超声波探头等效电路

    Figure  5.   Equivalent circuit of ultrasonic probe

    图  6   超声波测量电路结构

    Figure  6.   Structure of ultrasonic measurement circuit

    图  7   两种仪器测量的声波在铝块中的波形

    Figure  7.   Comparison of acoustic waveforms in aluminum block measured by two types of instruments

    图  8   岩屑声波测量值与测井值对比

    Figure  8.   Comparison between data from acoustic logging on cuttings and mud logging

    表  1   数据协议格式

    Table  1   Data protocol format

    序号命令头操作代号信息长度/byte输入信息说明
    1A1B2C3D40000000A0000000400000XXX设置发射接收通道:0~9个通道
    2A1B2C3D40000000B0000000400000XXX设置发射探头类型:0为单晶,1为双晶
    3A1B2C3D40000000C0000000400000XXX发射电压:XXX伏特
    4A1B2C3D40000000D0000000400000XXX发射脉宽:XXX ns
    5A1B2C3D40000000E0000000400000XXX信号增益:XXX倍数
    6A1B2C3D40000000F0000000400000XXX数据采集时长:XXX个10 ns
    7A1B2C3D40000000G0000000400000XXX重复周期:XXX个10 μs
    8A1B2C3D40000000H0000000400000XXX发射阻尼:0为50 Ω,1为200 Ω
    9A1B2C3D40000000I0000000400000XXX接收阻尼:0为50 Ω,1为200 Ω
    1000000XXX延迟时间:XXX个10 ns
    下载: 导出CSV

    表  2   软件采样频率

    Table  2   Software sampling frequency

    序号预设波形采集时长/μs波形数据数量硬件采样频率/MHz软件采样频率/MHz实际波形采集时长/μs备注
    1 1896100100.00 8.96探头频率小于20 MHz
    2 5896100100.00 8.96探头频率小于20 MHz
    3 10896100 89.60 10.00探头频率小于15 MHz
    4 20896100 44.80 20.00探头频率小于10 MHz
    5 50896100 17.92 50.00探头频率小于4 MHz
    6100896100 8.96100.00探头频率小于2 MHz
    7200896100 4.48200.00探头频率小于1 MHz
    下载: 导出CSV
  • [1] 王志战. 一体化、智能化时代的录井技术发展方向探讨[J]. 录井工程, 2020, 31(1): 1–6. doi: 10.3969/j.issn.1672-9803.2020.01.001

    WANG Zhizhan. Discussion on the development direction of mud logging technology in the era of integration and intellectualiza-tion[J]. Mud Logging Engineering, 2020, 31(1): 1–6. doi: 10.3969/j.issn.1672-9803.2020.01.001

    [2] 王大勋,刘洪,韩松,等. 深部岩石力学与深井钻井技术研究[J]. 钻采工艺, 2006, 29(3): 6–10. doi: 10.3969/j.issn.1006-768X.2006.03.003

    WANG Daxun, LIU Hong, HAN Song, et al. Deep rock mechanics and deep or ultra-deep well drilling technology[J]. Drilling & Production Technology, 2006, 29(3): 6–10. doi: 10.3969/j.issn.1006-768X.2006.03.003

    [3] 王秀明,张海澜,何晓,等. 声波测井中的物理问题[J]. 物理, 2011, 40(2): 79–87.

    WANG Xiuming, ZHANG Hailan, HE Xiao, et al. Physical problems in acoustic logging[J]. Physics, 2011, 40(2): 79–87.

    [4]

    TANG X M, ZHENG Y, PATTERSON D. Processing array acoustic logging data to image near-borehole geological structures[J]. Geophysics, 2007, 72(2): E87–E97. doi: 10.1190/1.2435083

    [5]

    MARSALA A F, ZAUSA F, MARTERA M D, et al. Sonic while drilling: have you thought about cuttings?[J]. SPE Formation Evaluation, 1997, 12(2): 77–84. doi: 10.2118/30545-PA

    [6]

    MARSALA A F, BRIGNOLI M, DEL GAUDIO L, et al. Water based drilling fluid evaluation: acoustic on cuttings reveals geomechanical modifications induced on shale formations[R]. OMC-2001-044, 2001.

    [7] 葛洪魁,宋丽莉,林英松,等. 岩屑波速及微硬度测试的初步研究[J]. 石油钻探技术, 2002, 30(2): 1–3. doi: 10.3969/j.issn.1001-0890.2002.02.001

    GE Hongkui, SONG Lili, LIN Yingsong, et al. Primary study on testing of cuttings’ acoustic velocity and micro-hardness[J]. Petroleum Drilling Techniques, 2002, 30(2): 1–3. doi: 10.3969/j.issn.1001-0890.2002.02.001

    [8] 邹德永,程远方,刘洪祺. 岩屑声波法评价岩石可钻性的试验研究[J]. 岩石力学与工程学报, 2004, 23(14): 2439–2443. doi: 10.3321/j.issn:1000-6915.2004.14.027

    ZOU Deyong, CHENG Yuanfang, LIU Hongqi. Testing study on rock drillability evaluation by acoustic velocity of cutting[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(14): 2439–2443. doi: 10.3321/j.issn:1000-6915.2004.14.027

    [9] 程远方,王京印,沈海超,等. 岩屑声波法地层压力监测技术研究与应用[J]. 中国石油大学学报(自然科学版), 2006, 30(5): 50–52, 66.

    CHENG Yuanfang, WANG Jingyin, SHEN Haichao, et al. Technology of formation pressure monitoring by measuring cuttings acoustic velocity[J]. Journal of China University of Petroleum (Edition of Natural Science), 2006, 30(5): 50–52, 66.

    [10] 程远方, 邹德永, 王桂华.岩屑声波波速测量装置: CN03268815.6[P]. 2004-09-01.

    CHENG Yuanfang, ZOU Deyong, WANG Guihua. A device for measuring acoustic velocity of cuttings: CN03268815.6[P]. 2004-09-01.

    [11] 索彧,葛洪魁,王小琼,等. 页岩岩屑高精度波速测量的仪器与方法[J]. 岩土力学, 2018, 39(1): 385–392.

    SUO Yu, GE Hongkui, WANG Xiaoqiong, et al. Instruments and methods with high-precision for wave velocity measurement on shale debris[J]. Rock and Soil Mechanics, 2018, 39(1): 385–392.

    [12] 李二帅.利用岩屑检测地层岩石力学参数的方法与实验研究[D].成都: 西南石油大学, 2016.

    LI Ershuai. Method and experimental study on rock mechanics parameters detection with cuttings[D]. Chengdu: Southwest Petroleum University, 2016.

    [13] 路保平,鲍洪志,余夫. 基于流体声速的碳酸盐岩地层孔隙压力求取方法[J]. 石油钻探技术, 2017, 45(3): 1–7.

    LU Baoping, BAO Hongzhi, YU Fu. Aporepressure calculating me-thod for carbonate formations based on fluid velocity[J]. Petroleum Drilling Techniques, 2017, 45(3): 1–7.

    [14] 韩丽轩,于保华,胡小平. 功率超声压电换能器阻抗匹配电路参数化设计[J]. 压电与声光, 2015, 37(4): 713–716, 720. doi: 10.11977/j.issn.1004-2474.2015.04.041

    HAN Lixuan, YU Baohua, HU Xiaoping. Parametric design of impedance matching circuit for power ultrasonic piezoelectric transducer[J]. Piezoelectrics & Acoustooptics, 2015, 37(4): 713–716, 720. doi: 10.11977/j.issn.1004-2474.2015.04.041

    [15] SY/T 6351—2012 岩样声波特性的实验室测量规范[S].

    SY/T 6351—2012 Specification for measurement of rock acoustic properties in laboratory[S].

    [16] 席鹏飞,杨明合,郭王恒,等. 基于声波时差数据波动性识别异常压实地层的方法[J]. 石油钻探技术, 2019, 47(6): 111–115. doi: 10.11911/syztjs.2019136

    XI Pengfei, YANG Minghe, GUO Wangheng, et al. A method for identifying abnormally compacted strata based on the fluctuation of interval transit time data[J]. Petroleum Drilling Techniques, 2019, 47(6): 111–115. doi: 10.11911/syztjs.2019136

  • 期刊类型引用(4)

    1. 白园园. 浮箍浮鞋腐蚀特性分析及预防措施. 现代制造技术与装备. 2024(12): 10-12 . 百度学术
    2. 徐星. 套管浮箍浮鞋选型分析及失效预防措施. 石油矿场机械. 2023(03): 68-75 . 百度学术
    3. 陈新海,豆惠萍,王乐顶,李立昌,李毅,王锐,杨恺. 钻井用浮箍结构冲蚀安全优化数值模拟研究. 安全与环境工程. 2019(01): 170-176 . 百度学术
    4. 李社坤,周战云,任文亮,秦克明,侯平. 大位移水平井旋转自导式套管浮鞋的研制及应用. 石油钻采工艺. 2017(03): 323-327 . 百度学术

    其他类型引用(1)

图(8)  /  表(2)
计量
  • 文章访问数:  931
  • HTML全文浏览量:  350
  • PDF下载量:  125
  • 被引次数: 5
出版历程
  • 收稿日期:  2020-06-29
  • 修回日期:  2020-10-18
  • 网络出版日期:  2020-10-22
  • 刊出日期:  2020-11-30

目录

    /

    返回文章
    返回