便携式岩屑声波录井系统研制与测试

王志战, 朱祖扬, 李丰波, 张元春, 张卫, 杜焕福

王志战, 朱祖扬, 李丰波, 张元春, 张卫, 杜焕福. 便携式岩屑声波录井系统研制与测试[J]. 石油钻探技术, 2020, 48(6): 109-115. DOI: 10.11911/syztjs.2020141
引用本文: 王志战, 朱祖扬, 李丰波, 张元春, 张卫, 杜焕福. 便携式岩屑声波录井系统研制与测试[J]. 石油钻探技术, 2020, 48(6): 109-115. DOI: 10.11911/syztjs.2020141
WANG Zhizhan, ZHU Zuyang, LI Fengbo, ZHANG Yuanchun, ZHANG Wei, DU Huanfu. Development and Testing of a Portable Acoustic Logging System on Cuttings[J]. Petroleum Drilling Techniques, 2020, 48(6): 109-115. DOI: 10.11911/syztjs.2020141
Citation: WANG Zhizhan, ZHU Zuyang, LI Fengbo, ZHANG Yuanchun, ZHANG Wei, DU Huanfu. Development and Testing of a Portable Acoustic Logging System on Cuttings[J]. Petroleum Drilling Techniques, 2020, 48(6): 109-115. DOI: 10.11911/syztjs.2020141

便携式岩屑声波录井系统研制与测试

基金项目: 国家自然科学基金企业创新发展联合基金项目“海相深层地层孔隙压力形成机理及预测方法探索”(编号:U19B6003-05-01)、国家自然科学基金青年基金项目“弹性波散射衰减对致密砂岩非均质性的响应机制及实验研究”(编号:41704109)、国家科技重大专项“低渗透油气藏高效开发钻完井技术”(编号:2016ZX05021-2)和中石化石油工程公司科技攻关项目“岩屑声波录井技术研究”(编号:SG18-77J)联合资助
详细信息
    作者简介:

    王志战(1969—),男,山东栖霞人,1991年毕业于西北大学岩矿及地球化学专业,2006年获西北大学矿产普查与勘探专业博士学位,教授级高级工程师,主要从事低场核磁共振技术、地层压力随钻预测和监测技术、非常规油气储层快速评价技术方面的研究工作。E-mail:wangzz.sripe@sinopec.com

  • 中图分类号: TE142,TE927

Development and Testing of a Portable Acoustic Logging System on Cuttings

  • 摘要: 为了在钻井过程中实时测量所钻地层的声波速度,在研究岩屑声波录井方法的基础上,研制了高精度的便携式岩屑声波录井系统。设计岩屑声波录井系统时,采用了具有脉冲发生器和示波器功能的一体化电路,并研制了能够快速读取、存储波形数据的软件示波器;采用了超声波透射法,通过超声波探头发射1 MHz频率的超声波,测量声波穿过岩屑样品的纵波速度和横波速度。对该系统进行了实验室比对和实钻井偶极子声波测井比对测试,结果表明,声波速度测量精度大于98.0%、岩屑声波和电缆声波数据一致性大于80.0%。利用该系统不仅可以随钻监测地层异常压力,还可以实时评价岩石的脆性、可压性、可钻性和井壁稳定性。
    Abstract: In order to measure the real-time acoustic velocity in the formation while drilling, a portable acoustic logging system on cuttings with high precision was developed based on the research of acoustic logging on cuttings. In the design of this logging system, integrated circuit of pulse generator and oscilloscope was adopted. In addition, software functioning as oscilloscope that could quickly read and store waveform data was studied for this system. By using the ultrasonic transmission method, an ultrasonic probe was used to emit ultrasonic waves with 1 MHz frequency to measure the P-wave velocity and S-wave velocity of the acoustic wave passing through cuttings samples. Results comparisons were conducted on both the laboratory test and the dipole acoustic logging in actual drilling. The results showed that the accuracy of acoustic velocity measurement was more than 98.0%, and the consistency of acoustic logging data of cuttings and wireline acoustic data was greater than 80.0%. This system could not only be used to monitor abnormal formation pressure while drilling, but also to evaluate rock brittleness, compressibility, drillability and wellbore stability in real time.
  • 图  1   钻井岩屑运移示意

    Figure  1.   Schematic diagram of cuttings migration while drilling

    图  2   岩屑声波录井流程

    Figure  2.   The process of acoustic logging on cuttings

    图  3   岩屑声波录井系统

    Figure  3.   Acoustic logging system on cuttings

    图  4   超声波探头结构

    Figure  4.   Structure of ultrasonic probe

    图  5   超声波探头等效电路

    Figure  5.   Equivalent circuit of ultrasonic probe

    图  6   超声波测量电路结构

    Figure  6.   Structure of ultrasonic measurement circuit

    图  7   两种仪器测量的声波在铝块中的波形

    Figure  7.   Comparison of acoustic waveforms in aluminum block measured by two types of instruments

    图  8   岩屑声波测量值与测井值对比

    Figure  8.   Comparison between data from acoustic logging on cuttings and mud logging

    表  1   数据协议格式

    Table  1   Data protocol format

    序号命令头操作代号信息长度/byte输入信息说明
    1A1B2C3D40000000A0000000400000XXX设置发射接收通道:0~9个通道
    2A1B2C3D40000000B0000000400000XXX设置发射探头类型:0为单晶,1为双晶
    3A1B2C3D40000000C0000000400000XXX发射电压:XXX伏特
    4A1B2C3D40000000D0000000400000XXX发射脉宽:XXX ns
    5A1B2C3D40000000E0000000400000XXX信号增益:XXX倍数
    6A1B2C3D40000000F0000000400000XXX数据采集时长:XXX个10 ns
    7A1B2C3D40000000G0000000400000XXX重复周期:XXX个10 μs
    8A1B2C3D40000000H0000000400000XXX发射阻尼:0为50 Ω,1为200 Ω
    9A1B2C3D40000000I0000000400000XXX接收阻尼:0为50 Ω,1为200 Ω
    1000000XXX延迟时间:XXX个10 ns
    下载: 导出CSV

    表  2   软件采样频率

    Table  2   Software sampling frequency

    序号预设波形采集时长/μs波形数据数量硬件采样频率/MHz软件采样频率/MHz实际波形采集时长/μs备注
    1 1896100100.00 8.96探头频率小于20 MHz
    2 5896100100.00 8.96探头频率小于20 MHz
    3 10896100 89.60 10.00探头频率小于15 MHz
    4 20896100 44.80 20.00探头频率小于10 MHz
    5 50896100 17.92 50.00探头频率小于4 MHz
    6100896100 8.96100.00探头频率小于2 MHz
    7200896100 4.48200.00探头频率小于1 MHz
    下载: 导出CSV
  • [1] 王志战. 一体化、智能化时代的录井技术发展方向探讨[J]. 录井工程, 2020, 31(1): 1–6. doi: 10.3969/j.issn.1672-9803.2020.01.001

    WANG Zhizhan. Discussion on the development direction of mud logging technology in the era of integration and intellectualiza-tion[J]. Mud Logging Engineering, 2020, 31(1): 1–6. doi: 10.3969/j.issn.1672-9803.2020.01.001

    [2] 王大勋,刘洪,韩松,等. 深部岩石力学与深井钻井技术研究[J]. 钻采工艺, 2006, 29(3): 6–10. doi: 10.3969/j.issn.1006-768X.2006.03.003

    WANG Daxun, LIU Hong, HAN Song, et al. Deep rock mechanics and deep or ultra-deep well drilling technology[J]. Drilling & Production Technology, 2006, 29(3): 6–10. doi: 10.3969/j.issn.1006-768X.2006.03.003

    [3] 王秀明,张海澜,何晓,等. 声波测井中的物理问题[J]. 物理, 2011, 40(2): 79–87.

    WANG Xiuming, ZHANG Hailan, HE Xiao, et al. Physical problems in acoustic logging[J]. Physics, 2011, 40(2): 79–87.

    [4]

    TANG X M, ZHENG Y, PATTERSON D. Processing array acoustic logging data to image near-borehole geological structures[J]. Geophysics, 2007, 72(2): E87–E97. doi: 10.1190/1.2435083

    [5]

    MARSALA A F, ZAUSA F, MARTERA M D, et al. Sonic while drilling: have you thought about cuttings?[J]. SPE Formation Evaluation, 1997, 12(2): 77–84. doi: 10.2118/30545-PA

    [6]

    MARSALA A F, BRIGNOLI M, DEL GAUDIO L, et al. Water based drilling fluid evaluation: acoustic on cuttings reveals geomechanical modifications induced on shale formations[R]. OMC-2001-044, 2001.

    [7] 葛洪魁,宋丽莉,林英松,等. 岩屑波速及微硬度测试的初步研究[J]. 石油钻探技术, 2002, 30(2): 1–3. doi: 10.3969/j.issn.1001-0890.2002.02.001

    GE Hongkui, SONG Lili, LIN Yingsong, et al. Primary study on testing of cuttings’ acoustic velocity and micro-hardness[J]. Petroleum Drilling Techniques, 2002, 30(2): 1–3. doi: 10.3969/j.issn.1001-0890.2002.02.001

    [8] 邹德永,程远方,刘洪祺. 岩屑声波法评价岩石可钻性的试验研究[J]. 岩石力学与工程学报, 2004, 23(14): 2439–2443. doi: 10.3321/j.issn:1000-6915.2004.14.027

    ZOU Deyong, CHENG Yuanfang, LIU Hongqi. Testing study on rock drillability evaluation by acoustic velocity of cutting[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(14): 2439–2443. doi: 10.3321/j.issn:1000-6915.2004.14.027

    [9] 程远方,王京印,沈海超,等. 岩屑声波法地层压力监测技术研究与应用[J]. 中国石油大学学报(自然科学版), 2006, 30(5): 50–52, 66.

    CHENG Yuanfang, WANG Jingyin, SHEN Haichao, et al. Technology of formation pressure monitoring by measuring cuttings acoustic velocity[J]. Journal of China University of Petroleum (Edition of Natural Science), 2006, 30(5): 50–52, 66.

    [10] 程远方, 邹德永, 王桂华.岩屑声波波速测量装置: CN03268815.6[P]. 2004-09-01.

    CHENG Yuanfang, ZOU Deyong, WANG Guihua. A device for measuring acoustic velocity of cuttings: CN03268815.6[P]. 2004-09-01.

    [11] 索彧,葛洪魁,王小琼,等. 页岩岩屑高精度波速测量的仪器与方法[J]. 岩土力学, 2018, 39(1): 385–392.

    SUO Yu, GE Hongkui, WANG Xiaoqiong, et al. Instruments and methods with high-precision for wave velocity measurement on shale debris[J]. Rock and Soil Mechanics, 2018, 39(1): 385–392.

    [12] 李二帅.利用岩屑检测地层岩石力学参数的方法与实验研究[D].成都: 西南石油大学, 2016.

    LI Ershuai. Method and experimental study on rock mechanics parameters detection with cuttings[D]. Chengdu: Southwest Petroleum University, 2016.

    [13] 路保平,鲍洪志,余夫. 基于流体声速的碳酸盐岩地层孔隙压力求取方法[J]. 石油钻探技术, 2017, 45(3): 1–7.

    LU Baoping, BAO Hongzhi, YU Fu. Aporepressure calculating me-thod for carbonate formations based on fluid velocity[J]. Petroleum Drilling Techniques, 2017, 45(3): 1–7.

    [14] 韩丽轩,于保华,胡小平. 功率超声压电换能器阻抗匹配电路参数化设计[J]. 压电与声光, 2015, 37(4): 713–716, 720. doi: 10.11977/j.issn.1004-2474.2015.04.041

    HAN Lixuan, YU Baohua, HU Xiaoping. Parametric design of impedance matching circuit for power ultrasonic piezoelectric transducer[J]. Piezoelectrics & Acoustooptics, 2015, 37(4): 713–716, 720. doi: 10.11977/j.issn.1004-2474.2015.04.041

    [15] SY/T 6351—2012 岩样声波特性的实验室测量规范[S].

    SY/T 6351—2012 Specification for measurement of rock acoustic properties in laboratory[S].

    [16] 席鹏飞,杨明合,郭王恒,等. 基于声波时差数据波动性识别异常压实地层的方法[J]. 石油钻探技术, 2019, 47(6): 111–115. doi: 10.11911/syztjs.2019136

    XI Pengfei, YANG Minghe, GUO Wangheng, et al. A method for identifying abnormally compacted strata based on the fluctuation of interval transit time data[J]. Petroleum Drilling Techniques, 2019, 47(6): 111–115. doi: 10.11911/syztjs.2019136

  • 期刊类型引用(25)

    1. 胡宏涛,管震,张宝权,赖刚,邹卓峰,曾杰. 基于实时数据的钻井KPI自动分析研究. 中国设备工程. 2024(24): 76-79 . 百度学术
    2. 付群超,曾烃详,陈沛,钟鹏,王瑞科,杜坤. 基于随机森林回归模型的钻井作业周期预测. 录井工程. 2024(04): 39-47 . 百度学术
    3. 王学强,樊建春,杨哲,罗双平,徐志凯,蔡正伟,熊毅. 树增强型贝叶斯模型提升溢流预警时间提前量. 石油钻采工艺. 2024(04): 413-428 . 百度学术
    4. 晏琰,段慕白,黄浩. 基于趋势线法的钻井风险预警技术研究. 钻采工艺. 2023(02): 170-174 . 百度学术
    5. 何淼,陈欢,张党生,许明标,陈鑫. 基于深度自编码器的钻井工况智能识别研究. 长江大学学报(自然科学版). 2023(03): 84-93 . 百度学术
    6. 梅舜豪. 基于人工智能的钻井工程异常预警系统研究及应用. 石油化工自动化. 2023(04): 59-63 . 百度学术
    7. 张菲菲,崔亚辉,于琛,张同颖,陈俊,颜寒. 基于机器学习的钻井工况识别技术现状及发展. 长江大学学报(自然科学版). 2023(04): 53-65+143 . 百度学术
    8. 张禾,池紫欣. 基于BSMOTE-SVM算法的溢流风险评价. 控制工程. 2023(12): 2173-2178 . 百度学术
    9. 夏文鹤,赵宗旭,李皋,李永杰,李宬晓,陈向东. 基于非线性分类网络的气体钻井风险智能识别方法. 信息与控制. 2023(04): 455-465 . 百度学术
    10. 毛光黔,宋先知,丁燕,崔猛,刘雨龙,祝兆鹏. 基于梯度提升决策树算法的钻井工况识别方法. 石油钻采工艺. 2023(05): 532-539 . 百度学术
    11. 王海涛,王建华,邱晨,毛金涛,李辉. 基于双向长短期记忆循环神经网络和条件随机场的钻井工况识别方法. 石油钻采工艺. 2023(05): 540-547+554 . 百度学术
    12. Wen-He Xia,Zong-Xu Zhao,Cheng-Xiao Li,Gao Li,Yong-Jie Li,Xing Ding,Xiang-Dong Chen. Intelligent risk identification of gas drilling based on nonlinear classification network. Petroleum Science. 2023(05): 3074-3084 . 必应学术
    13. Ying Qiao,Hong-Min Xu,Wen-Jun Zhou,Bo Peng,Bin Hu,Xiao Guo. A BiGRU joint optimized attention network for recognition of drilling conditions. Petroleum Science. 2023(06): 3624-3637 . 必应学术
    14. 韩玉娇. 基于AdaBoost机器学习算法的大牛地气田储层流体智能识别. 石油钻探技术. 2022(01): 112-118 . 本站查看
    15. 胡万俊,夏文鹤,李永杰,蒋俊,李皋,陈一健. 气体钻井随钻安全风险智能识别方法. 石油勘探与开发. 2022(02): 377-384 . 百度学术
    16. 刘胜娃,曹湘华. 基于决策树的钻井工况智能识别方法. 新型工业化. 2022(01): 28-30 . 百度学术
    17. HU Wanjun,XIA Wenhe,LI Yongjie,JIANG Jun,LI Gao,CHEN Yijian. An intelligent identification method of safety risk while drilling in gas drilling. Petroleum Exploration and Development. 2022(02): 428-437 . 必应学术
    18. 王钰豪,郝家胜,张帆,魏强,彭知南,段慕白. 钻井溢流风险的自适应LSTM预警方法. 控制理论与应用. 2022(03): 441-448 . 百度学术
    19. 殷启帅,杨进,曹博涵,龙洋,陈柯锦,范梓伊,贺馨悦. 基于长短期记忆神经网络的深水钻井工况实时智能判别模型. 石油钻采工艺. 2022(01): 97-104 . 百度学术
    20. 胡志强,杨进,王磊,侯绪田,张桢翔,姜萌磊. 钻井工况智能识别与时效分析技术. 石油钻采工艺. 2022(02): 241-246 . 百度学术
    21. 赵春兰,屈瑶,王兵,范翔宇,赵鹏斐,李屹,何婷. 一种基于2D-CNN深度学习的钻井事故等级预测新方法. 天然气工业. 2022(12): 95-105 . 百度学术
    22. 夏田,郭建斌,赵一号. 基于改进支持向量机的选区激光熔化参数优化的研究. 热加工工艺. 2021(04): 29-31+37 . 百度学术
    23. 庞淼,雷银,卢杭,黄琦,何仕鹏. 降低钻井溢流智能化预警误报率的方法探索. 石油工业技术监督. 2021(10): 44-49 . 百度学术
    24. 柳海啸,刘芳,代文星,冯一,巩永刚,李明明. 基于大数据分析技术的钻井提效实践. 石油钻采工艺. 2021(04): 436-441 . 百度学术
    25. 刘兆年,赵颖,孙挺. 渤海区域基于数据驱动的钻井提速. 西南石油大学学报(自然科学版). 2020(06): 35-41 . 百度学术

    其他类型引用(15)

图(8)  /  表(2)
计量
  • 文章访问数:  931
  • HTML全文浏览量:  350
  • PDF下载量:  125
  • 被引次数: 40
出版历程
  • 收稿日期:  2020-06-29
  • 修回日期:  2020-10-18
  • 网络出版日期:  2020-10-22
  • 刊出日期:  2020-11-30

目录

    /

    返回文章
    返回