Antileaking and Lost Circulation Control Technology for the Mishrif Carbonate Reservoir in the Halfaya Oilfield of Iraq
-
摘要: 为了解决哈法亚油田Mishrif组碳酸盐岩裂缝溶洞型储层钻进过程中钻井液漏失严重的问题,根据该油田的地质和地层特征,分析了裂缝类型、漏失因素和漏失程度,根据目标区域漏失速率统计结果,结合现场实际,进行了漏失类型区域划分;针对不同漏失类型区域优选堵漏材料和堵漏浆配方,形成了渗漏区、部分漏失区的防漏堵漏技术,恶性漏失区、完全漏失区的综合治理技术。2019年以来,Mishrif组碳酸盐岩储层防漏堵漏技术在21口定向井进行了应用,与前3年未用该技术时的平均水平相比,每口井平均漏失量由472 m3降至29 m3,复杂时率降低12.5%,钻井周期缩短8.5%,取得了良好的现场应用效果。Mishrif组碳酸盐岩储层防漏堵漏技术为解决其他区块碳酸盐岩裂缝溶洞型储层钻井漏失难题提供了技术途径。Abstract: In order to solve the problem of mud loss in the drilling operations of fractured-vuggy Mishrif carbonate reservoirs in the Halfaya Oilfield, we analyzed such elements as fracture type, leakage factors, and degree of leakage according to the geological and formation conditions of the Halfaya Oilfield. The target area was classified and then zoned in terms of leakage type based on leakage rate statistics and field investigation. In addition, plugging materials and formulas were optimized for different leakage zones, forming the prevention and control technology of the leakage and partial leakage areas as well as the comprehensive treatment technology for the massive leakage area and the complete leakage area. This technology was applied in 21 directional wells in Mishrif carbonate reservoirs since 2019 and resulted in a satisfying application effect. Compared with 2016-2018, the mud loss per well has dropped from 472 m3 to 29 m3 ; complex well drilling dealing time rate has been cut by 12.5%; and drilling cycle has been reduced by 8.5%. This technology provides guidance in the form of a reference for solving the problem of mud loss in the drilling of fractured-vuggy carbonate reservoirs in other similar blocks.
-
Keywords:
- carbonate reservoir /
- antileakage /
- loss circulation control /
- leak type /
- regional division /
- Halfaya Oilfield
-
-
表 1 堵漏方式和防漏堵漏配方优选
Table 1 Method and formula optimization for antileaking and loss circulation control
堵漏技术 堵漏方式 漏失速率/
(m3·h–1)漏失区 防漏堵漏浆配方 封堵裂缝
宽度/mm最大承压
能力/MPa随钻防漏堵漏 全井式 ≤5 完全漏失、
恶性漏失高滤失钻井液+2.0%~4.0%超细碳酸钙(800/2 000目)+0.6%~1.5%液体套管+1.5%~2.0%磺化沥青 ≤1.0 3.0 段塞式 ≤5 部分漏失、
渗漏高滤失钻井液+3.0%~4.0%超细碳酸钙(800/2 000目)+2.0%~3.0%SDL-1+1.5%软化变形颗粒+0.5%PCC ≤1.0 4.0 停钻堵漏 桥塞式 5~10 部分漏失 混合堵漏剂+5.0%~7.0%桥接堵堵漏剂(细)+1.0%~2.0%变形粒子+2.0%~5.0%油溶树脂+0.3%~0.5%纤维 ≤2.0 5.0 10~30 恶性漏失 混合堵漏剂+3.0%~6.0%桥接堵漏剂(中)+4.0%~7.0%桥接堵漏剂(细)+3.0%~5.0%超细碳酸钙+3.0%~5.0%油溶树脂+0.5%~1.0%纤维 ≤3.0 5.0 >30 完全漏失 高黏度钻井液或含粗颗粒堵漏材料(云母、坚果壳、混合LCM和QS-2)的高滤失钻井液 ≤4.0 5.0 -
[1] 陈晓华,王翔,冯永超,等. 泾河油田裂缝性致密油藏防漏堵漏技术[J]. 断块油气田,2017,24(2):297–300. CHEN Xiaohua, WANG Xiang, FENG Yongchao, et al. Loss prevention and control technology for fractured reservoirs in Jinghe Oilfield[J]. Fault-Block Oil & Gas Field, 2017, 24(2): 297–300.
[2] 左星,罗超,张春林,等. 四川盆地裂缝储层钻井井漏安全起钻技术认识与探讨[J]. 天然气勘探与开发,2019,42(1):108–113. ZUO Xing, LUO Chao, ZHANG Chunlin, et al. Safe tripping-out technology against lost circulation in fractured reservoirs, Sichuan Basin[J]. Natural Gas Exploration and Development, 2019, 42(1): 108–113.
[3] 秦文政,张茂林. 塔北碳酸盐储层井控技术浅析[J]. 西部探矿工程,2017,29(4):40–42. doi: 10.3969/j.issn.1004-5716.2017.04.014 QIN Wenzheng, ZHANG Maolin. Analysis on well control technology of carbonate reservoir in Northern Tarim Basin[J]. West-China Exploration Engineering, 2017, 29(4): 40–42. doi: 10.3969/j.issn.1004-5716.2017.04.014
[4] 向朝纲,陈俊斌,陈鑫. 南约洛坦气田碳酸盐岩储层井漏治理技术[J]. 天然气勘探与开发,2018,41(4):106–111. XIANG Chaogang, CHEN Junbin, CHEN Xin. Lost-circulation treatment in carbonate-rock reservoirs, South Yoloten Gasfield, Turkmenistan[J]. Natural Gas Exploration and Development, 2018, 41(4): 106–111.
[5] 刘彦学. 松南气田低密度低伤害随钻堵漏钻井液技术[J]. 钻井液与完井液,2019,36(4):442–448. doi: 10.3969/j.issn.1001-5620.2019.04.008 LIU Yanxue. Low damage low density drilling fluid used in Songnan Gas Filed for lost circulation control while drilling[J]. Drilling Fluid & Completion Fluid, 2019, 36(4): 442–448. doi: 10.3969/j.issn.1001-5620.2019.04.008
[6] 王中华. 复杂漏失地层堵漏技术现状及发展方向[J]. 中外能源,2014,19(1):39–48. doi: 10.3969/j.issn.1673-579X.2014.01.007 WANG Zhonghua. The status and development direction of plugging technology for complex formation lost circulation[J]. Sino-Global Energy, 2014, 19(1): 39–48. doi: 10.3969/j.issn.1673-579X.2014.01.007
[7] 张志磊,胡百中,卞维坤,等. 昭通页岩气示范区井漏防治技术与实践[J]. 钻井液与完井液,2020,37(1):38–45. ZHANG Zhilei, HU Baizhong, BIAN Weikun, et al. Mud loss control techniques and practices in Zhaotong Demonstration Zone of Shale Gas Drilling[J]. Drilling Fluid & Completion Fluid, 2020, 37(1): 38–45.
[8] 曾义金. 海相碳酸盐岩超深油气井安全高效钻井关键技术[J]. 石油钻探技术,2020,47(3):25–33. ZENG Yijin. Key technologies for safe and efficient drilling of marine carbonate ultra-deep oil and gas wells[J]. Petroleum Drilling Techniques, 2020, 47(3): 25–33.
[9] 王青华,杨军征,陈诗波,等. 利用多级模糊评判法优选哈法亚油田人工举升方式[J]. 石油钻采工艺,2017,39(5):594–599. WANG Qinghua, YANG Junzheng, CHEN Shibo, et al. Optimization of artificial lift modes in Halfaya Oilfield by means of multi-level fuzzy evaluation method[J]. Oil Drilling & Production Technology, 2017, 39(5): 594–599.
[10] 王翔宇. 酸溶水泥浆体系在哈法亚地区的研究与应用[J]. 中国石油和化工标准与质量,2018,38(20):94–95. doi: 10.3969/j.issn.1673-4076.2018.20.045 WANG Xiangyu. Study and application of acid soluble drilling fluid system in Halfaya Oilfield[J]. China Petroleum and Chemical Standards and Quality, 2018, 38(20): 94–95. doi: 10.3969/j.issn.1673-4076.2018.20.045
[11] MAJIDI R, MISKA S Z, YU Mengjiao, et al. Fracture ballooning in naturally fractured formations Mechanism and controlling factors [R]. SPE 115526, 2008.
[12] LAVROV A. Newtonian fluid flow from an arbitrarily-oriented fracture into a single sink[J]. Acta Mechanica, 2006, 186(1/2/3/4): 55–74.
[13] 王海,林然,张晨阳,等. 串珠状缝洞型碳酸盐岩储层压力变化特征研究[J]. 西南石油大学学报(自然科学版),2017,39(1):124–132. doi: 10.11885/j.issn.1674-5086.2015.03.05.05 WANG Hai, LIN Ran, ZHANG Chenyang, et al. Pressure variation characteristics in bead-shaped fractured vuggy carbonate gas reservoirs[J]. Journal of Southwest Petroleum University (Science & Technology Edition), 2017, 39(1): 124–132. doi: 10.11885/j.issn.1674-5086.2015.03.05.05
[14] 王明波,郭亚亮,方明君,等. 裂缝性地层钻井液漏失动力学模拟及规律[J]. 石油学报,2017,38(5):597–606. doi: 10.7623/syxb201705013 WANG Mingbo, GUO Yaliang, FANG Mingjun, et al. Dynamics simulation and laws of drilling fluid loss in fractured formation[J]. Acta Petrolei Sinica, 2017, 38(5): 597–606. doi: 10.7623/syxb201705013
[15] 李大奇,康毅力,刘修善,等. 裂缝性地层钻井液漏失动力学模型研究进展[J]. 石油钻探技术,2013,41(4):42–47. doi: 10.3969/j.issn.1001-0890.2013.04.010 LI Daqi, KANG Yili, LIU Xiushan, et al. Progress in drilling fluid loss dynamics model for fractured formations[J]. Petroleum Drilling Techniques, 2013, 41(4): 42–47. doi: 10.3969/j.issn.1001-0890.2013.04.010
[16] 邱正松, 刘均一, 周宝义, 等.钻井液致密承压封堵裂缝机理与优化设计[J].石油学报, 2016, 37(增刊2): 137-143. QIU Zhengsong, LIU Junyi, ZHOU Baoyi, et al. Tight fracture-plugging mechanism and optimized design for plugging drilling fluid[J]. Acta Petrolei Sinica, 2016, 37(supplement 2): 137-143.
[17] 杨仲涵,罗鸣,陈江华,等. 莺歌海盆地超高温高压井挤水泥承压堵漏技术[J]. 石油钻探技术,2020,48(3):47–51. doi: 10.11911/syztjs.2020012 YANG Zhonghan, LUO Ming, CHEN Jianghua, et al. Cement squeezing for pressure-bearing plugging in ultra-high temperature and high pressure wells in the Yinggehai Basin[J]. Petroleum Drilling Techniques, 2020, 48(3): 47–51. doi: 10.11911/syztjs.2020012
-
期刊类型引用(11)
1. 庞涛,姜在炳,惠江涛,贾秉义. 煤系水平井定向射孔压裂裂缝扩展机制. 煤田地质与勘探. 2024(04): 68-75 . 百度学术
2. 安果涛,谢昕,孔祥伟,王存武. 射孔间距-倾角对深煤层水力裂缝扩展影响的离散元分析. 科学技术与工程. 2024(18): 7623-7629 . 百度学术
3. 杨兆中,杨晨曦,李小刚,闵超. 基于灰色关联的逼近理想解排序法的煤层气井重复压裂选井——以沁水盆地柿庄南区块为例. 科学技术与工程. 2020(12): 4680-4686 . 百度学术
4. 马东民,王传涛,夏玉成,张嘉睿,邵凯,杨甫. 大佛寺井田煤层气井压裂参数优化方案. 西安科技大学学报. 2019(02): 263-269 . 百度学术
5. 李昀昀,傅小康,李千山,孙宁蔚. 我国煤层气排采技术研究现状. 石油化工应用. 2019(04): 1-4+10 . 百度学术
6. 孙宁蔚. 基于灰色关联的沁水盆地煤层气井排采特征分析. 石油化工应用. 2019(11): 7-9+32 . 百度学术
7. 杨兆中,刘云锐,张平,李小刚,易良平. 煤层气直井地层破裂压力计算模型. 石油学报. 2018(05): 578-586 . 百度学术
8. 杨新新,王伟锋,姜帅,杨浩珑. 抗高温高密度低伤害压裂液体系. 断块油气田. 2017(04): 583-586 . 百度学术
9. 张快乐,刘化普. 利用数值试井反演井组低渗透储层参数. 中外能源. 2017(09): 44-48 . 百度学术
10. 李玉伟,贾丹,高睿,高长龙,米洁翰,艾池. 煤岩复杂裂缝长期导流能力实验研究. 天然气与石油. 2017(01): 94-99+11-12 . 百度学术
11. 陈德飞,孟祥娟,周玉,张慧芳,江春明. 岩石破坏后力学特性及其对天然气开采的影响. 断块油气田. 2016(03): 405-408 . 百度学术
其他类型引用(8)