Effect of Temperature on the Imbibition Efficiency of the Jimusar Tight Oil Reservoir
-
摘要: 为了明确密切割体积压裂后温度对致密油藏渗吸效率的影响,利用高温高压致密岩心渗吸实验装置,通过渗吸驱油实验,研究了吉木萨尔凹陷芦草沟组天然致密油藏岩心在不同温度、压力条件下的渗吸机理。实验结果显示:随着温度升高,渗吸效率提高,渗吸速度变快,渗吸所需时间缩短;实验温度高于吉木萨尔致密油藏温度时,温度升高对渗吸效率影响较小;实验温度低于油藏温度时,温度越低,对渗吸效率影响越大;不同温度下单位面积渗吸油量与单位面积饱和油量呈正相关关系。研究结果表明,温度的变化对吉木萨尔凹陷芦草沟组致密油藏渗吸驱油作用具有较大影响,致密油藏体积压裂过程中应尽可能降低压裂液对地层造成的冷伤害。Abstract: In order to specify the effect of temperature on the imbibition efficiency in tight reservoirs after dense cut volume fracturing, imbibition mechanism experiments on the natural tight oil reservoir cores of Lucaogou Formation of Jimusar Sag were carried out under different temperature and pressure conditions by using the HTHP imbibition experimental apparatus for tight cores. The experimental results of imbibition and oil displacement showed that the imbibition efficiency increases as the temperature increases, the imbibition rate also accelerates with the increasing temperature, and the time required for imbibition reaction is reduced. When the experimental temperature is higher than the in-situ tight oil reservoir temperature of Jimusar Sag, the temperature increase has a minor effect on the imbibition efficiency. Correspondingly, when the experimental temperature is lower than the reservoir temperature, the lower the temperature, the greater its influence on the imbibition efficiency. There is a positive correlation between the imbibition amount and the saturated oil mass per unit area at different temperature conditions. The results indicated that temperature change has a great effect on the imbibition and oil displacement of the Lucaogou tight oil reservoirs in the Jimusar Sag. Therefore, the cold damage to the formation caused by the fracture fluid should be controlled as much as possible in the volume fracturing of tight oil reservoirs.
-
Keywords:
- tight oil reservoir /
- temperature /
- soaking /
- imbibition efficiency /
- physical simulation /
- Jimusar Sag
-
-
表 1 温度对致密油藏岩心渗吸效率的影响
Table 1 Effect of temperature on the imbibition efficiency of cores from tight oil reservoir
岩心编号 温度/℃ 渗吸效率,% 17-4 65 7.81 18-5 80 9.52 18-4 87 11.30 18-7 95 13.40 19-2 103 13.80 17-3 110 14.10 表 2 不同温度条件下单位面积渗吸油量与单位面积饱和油量的关系
Table 2 Relationship between the imbibition amount and the saturated oil mass per unit area at different temperature conditions
岩心编号 温度/℃ 单位面积渗吸油量/
(kg·m–2)单位面积饱和油量/
(kg·m–2)17-4 65 0.244 737 3.307 28 18-5 80 0.368 421 3.850 16 18-4 87 0.763 158 6.816 32 18-7 95 0.568 421 4.571 11 19-2 103 0.447 368 3.576 40 17-3 110 0.384 211 2.894 54 表 3 不同时间不同温度下的岩心渗吸效率
Table 3 Imbibition efficiencies at different time and temperature conditions of core
岩心编号 温度/℃ 时间/h 渗吸效率,% 17-2 110 71.20 12.5 17-3 144.24 13.1 18-2 65 144.50 5.8 17-4 288.20 7.6 -
[1] 田伟, 刘慧卿, 何顺利, 等. 吉木萨尔凹陷芦草沟组致密油储层岩石微观孔隙结构表征[J]. 油气地质与采收率, 2019, 26(4): 24–32. TIAN Wei, LIU Huiqing, HE Shunli, et al. Characterization of microscopic pore structure of light oil reservoirs in Lucaogou Formation, Jimusaer Sag[J]. Petroleum Geology and Recovery Efficiency, 2019, 26(4): 24–32.
[2] 李士奎, 刘卫东, 张海琴, 等. 低渗透油藏自发渗吸驱油实验研究[J]. 石油学报, 2007, 28(2): 109–112. doi: 10.3321/j.issn:0253-2697.2007.02.022 LI Shikui, LIU Weidong, ZHANG Haiqin, et al. Experimental study of spontaneous imbibition in low-permeability reservoir[J]. Acta Petrolei Sinica, 2007, 28(2): 109–112. doi: 10.3321/j.issn:0253-2697.2007.02.022
[3] 马克, 刘钰铭, 侯加根, 等. 陆相咸化湖混合沉积致密储集层致密化机理: 以吉木萨尔凹陷二叠系芦草沟组为例[J]. 新疆石油地质, 2019, 40(3): 253–261. MA Ke, LIU Yuming, HOU Jiagen, et al. Densification mechanism of tight reservoirs from mixed sedimentation in saline lacustrine environment: a case study of Permian Lucaogou Formation, Jimsar Sag[J]. Xinjiang Petroleum Geology, 2019, 40(3): 253–261.
[4] 李阳. 中国石化致密油藏开发面临的机遇与挑战[J]. 石油钻探技术, 2015, 43(5): 1–6. LI Yang. Opportunities and challenges for Sinopec to develop tight oil reservoirs[J]. Petroleum Drilling Techniques, 2015, 43(5): 1–6.
[5] 薛承瑾. 页岩气压裂技术现状及发展建议[J]. 石油钻探技术, 2011, 39(3): 24–29. doi: 10.3969/j.issn.1001-0890.2011.03.004 XUE Chengjin. Technical advance and development proposals of shale gas fracturing[J]. Petroleum Drilling Techniques, 2011, 39(3): 24–29. doi: 10.3969/j.issn.1001-0890.2011.03.004
[6] MOOR T F, SLOBOD R L. The effect of viscosity and capillarity on the displacement of oil by water[J]. Producers Monthly, 1956, 20(10): 20–30.
[7] 黄婷, 苏良银, 达引朋, 等. 超低渗透油藏水平井储能压裂机理研究与现场试验[J]. 石油钻探技术, 2020, 48(1): 80–84. doi: 10.11911/syztjs.2020024 HUANG Ting, SU Liangyin, DA Yinpeng, et al. Research and field test on energy storage fracturing mechanism of horizontal wells in ultra-low permeability reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(1): 80–84. doi: 10.11911/syztjs.2020024
[8] ARONOFSKY J S, JENKINS R. A simplified analysis of unsteady radial gas flow[J]. Journal of Petroleum Technology, 1954, 6(7): 23–28. doi: 10.2118/271-G
[9] AKIN S, KOVSCEK A R. Imbibition studies of low-permeability porous media[R]. SPE54590, 1999.
[10] 王俊杰, 胡勇, 刘义成, 等. 致密砂岩气层毛细管自吸水锁损害及控制因素[J]. 断块油气田, 2019, 26(5): 626–631. WANG Junjie, HU Yong, LIU Yicheng, et al. Damage of water blocking by spontaneous imbibition in tight sandstone gas reservoir and its controlling factors[J]. Fault-Block Oil & Gas Field, 2019, 26(5): 626–631.
[11] MASON G, MORROW N R. Capillary behaviors of a perfectly wetting liquid in irregular triangular tubes[J]. Journal of Colloid and Interface Science, 1991, 141(1): 262–274. doi: 10.1016/0021-9797(91)90321-X
[12] CAI Jianchao, YU Boming, MEI Maofei, et al. Capillary rise in a single tortuous capillary[J]. Chinese Physics Letters, 2010, 27(5): 054701. doi: 10.1088/0256-307X/27/5/054701
[13] 韦青, 李治平, 白瑞婷, 等. 微观孔隙结构对致密砂岩渗吸影响的试验研究[J]. 石油钻探技术, 2016, 44(5): 109–116. WEI Qing, LI Zhiping, BAI Ruiting, et al. An experimental study on the effect of microscopic pore structure on spontaneous imbibition in tight sandstones[J]. Petroleum Drilling Techniques, 2016, 44(5): 109–116.
[14] 李洪, 李治平, 王香增, 等. 表面活性剂对低渗透油藏渗吸敏感因素的影响[J]. 石油钻探技术, 2016, 44(5): 100–103. LI Hong, LI Zhiping, WANG Xiangzeng, et al. The effect of surfactants on imbibition-sensitive factors of low-permeability reservoirs[J]. Petroleum Drilling Techniques, 2016, 44(5): 100–103.
[15] 曲响梅. 吉木萨尔致密油储层渗吸特性的实验研究[D]. 北京: 中国石油大学(北京), 2018. QU Xiangmei. Imbibition characteristics of tight oil reservoir in Jimusar Area[D]. Beijing: China University of Petroleum(Beijing), 2014.
[16] MATTAX C C, KYTE J R. Imbibition oil recovery from fractured, water-drive reservoir[J]. Society of Petroleum Engineers Journal, 1962, 2(2): 177–184. doi: 10.2118/187-PA
[17] BABADAGLI T, ERSHAGHI I. Imbibition assisted two-phase flow in natural fractures[R]. SPE 24044, 1992.
[18] 王家禄, 刘玉章, 陈茂谦, 等. 低渗透油藏裂缝动态渗吸机理实验研究[J]. 石油勘探与开发, 2009, 36(1): 86–90. doi: 10.3321/j.issn:1000-0747.2009.01.011 WANG Jialu, LIU Yuzhang, CHEN Maoqian, et al. Experimental study on dynamic imbibition mechanism of low permeability reservoirs[J]. Petroleum Exploration and Development, 2009, 36(1): 86–90. doi: 10.3321/j.issn:1000-0747.2009.01.011
[19] 许建红, 马丽丽. 低渗透裂缝性油藏自发渗吸渗流作用[J]. 油气地质与采收率, 2015, 22(3): 111–114. doi: 10.3969/j.issn.1009-9603.2015.03.020 XU Jianhong, MA Lili. Spontaneous imbibition in fractured low permeability reservoir[J]. Petroleum Geology and Recovery Efficiency, 2015, 22(3): 111–114. doi: 10.3969/j.issn.1009-9603.2015.03.020
[20] 李爱芬, 凡田友, 赵琳. 裂缝性油藏低渗透岩心自发渗吸实验研究[J]. 油气地质与采收率, 2011, 18(5): 67–69, 77. doi: 10.3969/j.issn.1009-9603.2011.05.018 LI Aifen, FAN Tianyou, ZHAO Lin. Experiment study of spontaneous imbibition in low permeability core, fractured reservoir[J]. Petroleum Geology and Recovery Efficiency, 2011, 18(5): 67–69, 77. doi: 10.3969/j.issn.1009-9603.2011.05.018
[21] 周德胜, 李鸣, 师煜涵, 等. 致密砂岩储层渗吸稳定时间影响因素研究[J]. 特种油气藏, 2018, 25(2): 125–129. doi: 10.3969/j.issn.1006-6535.2018.02.025 ZHOU Desheng, LI Ming, SHI Yuhan, et al. Sensitivity analysis of imbibition stability time in tight sandstone reservoir[J]. Special Oil & Gas Reservoirs, 2018, 25(2): 125–129. doi: 10.3969/j.issn.1006-6535.2018.02.025