Simulation Tests of Effective Stress Changes in Gas Storage during Injection and Production
-
摘要: 储气库周期注采过程中有效应力变化会使储层发生应力敏感,为了了解应力敏感对储气库储层渗透率的影响程度,为优化储气库注采制度提供依据,开展了考虑与不考虑有效应力作用时间的碳酸盐岩应力敏感试验,测试了试验过程中岩样的渗透率,并运用扫描电镜等手段,观测了考虑有效应力作用时间试验前后岩样裂缝的壁面。试验结果表明:不考虑有效应力作用时间时,碳酸盐岩裂缝岩样和基块岩样的应力敏感程度分别为弱—中等偏弱和无;考虑有效应力作用时间时,碳酸盐岩裂缝岩样和基块岩样的应力敏感程度分别为中等偏强和弱;随着有效应力作用时间增长,岩石裂缝壁面微凸体的破碎与微裂纹的萌生和扩展会强化岩样的应力敏感性。研究表明,为了弱化储气库储层的应力敏感程度,应合理控制储气库的注采压力。Abstract: The change of effective stress in the periodic injection-production process of underground gas storage will cause stress sensitivity of the reservoir. In order to understand the influence of stress sensitivity on permeability of gas storage reservoir and to provide the basis for optimizing the injection and production system of gas storage, stress sensitivity tests with consideration of effective stress action duration and without were carried out on carbonate rock samples, and the permeability of the rock samples in the test process were tested. By means of scanning electron microscope (SEM), the fracture wall of rock samples before and after the test considering the effective stress action duration was observed. The test results show that the stress sensitivity of carbonate fractures and matrix rock samples is weak–moderately weak and none without consideration of action duration, while the stress sensitivity of fracture and matrix rock samples considering the effective stress action duration is moderately strong–strong and weak. With the increase of effective stress action duration, the breaking of micro-protrusions on rock fracture walls and the initiation and propagation of micro-fractures will strengthen the stress sensitivity of rock samples. The results show that for the purpose to weaken the stress sensitivity of underground gas storage, the injection-production pressure of underground gas storage should be controlled reasonably.
-
-
表 1 试验岩样的基本物性参数
Table 1 Basic physical parameters of experimental rock samples
岩样号 长度/mm 直径/mm 孔隙度,% 渗透率/mD 裂缝宽度/μm 备注 XG-1 44.40 24.60 3.02 11.5319 13.88 裂缝 XG-2 45.10 24.72 2.86 3.6667 9.49 裂缝 XG-3 43.20 25.02 2.21 0.0013 基块 XG-4 43.24 24.60 3.42 0.0015 基块 XG-5 44.52 24.88 3.31 31.4265 19.46 裂缝 XG-6 44.77 24.58 3.72 147.2647 32.43 裂缝 XG-7 45.26 24.50 2.53 0.0012 基块 XG-8 45.04 25.04 2.45 0.0013 基块 表 2 应力敏感程度评价结果
Table 2 Evaluation results of stress sensitivity
岩样 应力敏感系数 应力敏感程度 备注 XG-1 0.34 中等偏弱 裂缝 XG-2 0.21 弱 裂缝 XG-3 0.03 无 基块 XG-4 0.04 无 基块 表 3 考虑有效应力作用时间的应力敏感评价结果
Table 3 Stress sensitivity evaluation results considering the duration of effective stress action
岩样号 应力敏感系数 应力敏感程度 备注 XG-5 0.75 强 裂缝 XG-6 0.68 中等偏强 裂缝 XG-7 0.18 弱 基块 XG-8 0.19 弱 基块 -
[1] KAN S Y, CHEN B, WU X F, et al. Natural gas overview for world economy: from primary supply to final demand via global supply chains[J]. Energy Policy, 2019, 124: 215–225. doi: 10.1016/j.enpol.2018.10.002
[2] 张刚雄,李彬,郑得文,等. 中国地下储气库业务面临的挑战及对策建议[J]. 天然气工业, 2017, 37(1): 153–159. ZHANG Gangxiong,LI Bin,ZHENG Dewen,et al. Challenges to and proposals for underground gas storage (UGS) business in China[J]. Natural Gas Industry, 2017, 37(1): 153–159.
[3] 殷代印,何超,董秀荣. 储气库调峰能力数值模拟研究[J]. 特种油气藏, 2015, 22(1): 95–98. YIN Daiyin,HE Chao,DONG Xiurong. Numerical simulation of gas storage peaking capacity[J]. Special Oil & Gas Reservoirs, 2015, 22(1): 95–98.
[4] AZIN R, NASIRI A, Entezari A J. Underground gas storage in a partially depleted gas reservoir[J]. Oil & Gas Science and Technology, 2008, 63(6): 691–703.
[5] ARFAEE M I R A, BEHNAM S S. Investigating the effect of fracture–matrix interaction in underground gas storage process at condensate naturally fractured reservoirs[J]. Journal of Natural Gas Science and Engineering, 2014, 19: 161–174. doi: 10.1016/j.jngse.2014.05.007
[6] LI Yongsheng, XIA Caichu. Time-dependent tests on intact rocks in uniaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 2000, 37(3): 467–475. doi: 10.1016/S1365-1609(99)00073-8
[7] FATT I, DAVIS D H. Reduction in permeability with overburden pressure[J]. Journal of Petroleum Technology, 1952, 4(12): 1–16.
[8] GOBRAN B, BRIGHAM W E, Ramey H J. Absolute permeability as a function of confining pressure, pore pressure, and temperature[J]. SPE Formation Evaluation, 1987, 2(1): 77–84. doi: 10.2118/10156-PA
[9] WANG Rui, YUE Xiang’an, ZHANG Wei, et al. Effects of time lag and stress loading rate on permeability in low permeability reservoirs[J]. Mining Science and Technology, 2009, 19(4): 526–530.
[10] SELVADURAI P, GLOWACKI A. Stress-induced permeability alterations in an argillaceous limestone[J]. Rock Mechanics and Rock Engineering, 2016, 50(5): 1079–1096.
[11] 王秀影,吴通,蔡军,等. 饶阳凹陷页岩油储层应力敏感规律[J]. 钻井液与完井液, 2020, 37(2): 185–191. WANG Xiuying, WU Tong, CAI Jun, et al. Patterns of stress sensitivity of the shale oil reservoirs in Raoyang Depression[J]. Drilling Fluid & Completion Fluid, 2020, 37(2): 185–191.
[12] 陈朝晖,谢一婷,邓勇. 疏松砂岩油藏出砂应力敏感实验研究[J]. 石油钻探技术, 2013, 41(1): 61–64. CHEN Zhaohui, XIE Yiting, DENG Yong. Experimental study on sanding stress sensitivity in unconsolidated sandstone reservoir[J]. Petroleum Drilling Techniques, 2013, 41(1): 61–64.
[13] 王欣,齐梅,胡永乐. 西加盆地B气田致密砂岩储层应力敏感评价[J]. 特种油气藏, 2015, 22(2): 85–88. WANG Xin, QI Mei, HU Yongle. Evaluation on stress sensitivity of tight sandstone in B Gasfield of Western Canada Basin[J]. Special Oil & Gas Reservoirs, 2015, 22(2): 85–88.
[14] JELMERT T A, SELSENG H. Permeability function describes core permeability in stress sensitivity rocks[J]. Oil & Gas Journal, 1998, 12(7): 60–63.
[15] 兰林,康毅力,陈一健,等. 储层应力敏感性评价试验方法与评价指标探讨[J]. 钻井液与完井液, 2005, 22(3): 1–4. doi: 10.3969/j.issn.1001-5620.2005.03.001 LAN Lin, KANG Yili, CHEN Yijian, et al. Discussion on evaluation methods for stress sensitivities of low permeability and tight sandstone reservoirs[J]. Drilling Fluid & Completion Fluid, 2005, 22(3): 1–4. doi: 10.3969/j.issn.1001-5620.2005.03.001
[16] MOOSAVI S, GOSHTASBI K, KAZEMZADEH E, et al. Relationship between porosity and permeability with stress using pore volume compressibility characteristic of reservoir rocks[J]. Arabian Journal of Geosciences, 2014, 7(1): 231–239. doi: 10.1007/s12517-012-0760-x
[17] 罗川. 储层渗透率应力敏感研究现状[J]. 断块油气田, 2019, 26(2): 187–191. LUO Chuan. Research status of stress sensitivity of reservoir permeability[J]. Fault-Block Oil & Gas Field, 2019, 26(2): 187–191.
[18] 蒋海军,鄢捷年,李荣. 裂缝性储层应力敏感性试验研究[J]. 石油钻探技术, 2000, 28(6): 32–33. doi: 10.3969/j.issn.1001-0890.2000.06.013 JIANG Haijun, YAN Jienian, LI Rong. Experimental study on Stress-Sensitivity of fracturing formations[J]. Petroleum Drilling Techniques, 2000, 28(6): 32–33. doi: 10.3969/j.issn.1001-0890.2000.06.013
[19] YOU Lijun, XUE Kunlin, KANG Yili, et al. Pore structure and limit pressure of gas slippage effect in tight sandstone[J]. The Scientific World Journal, 2013(2): 572140.
[20] TADAYONI M, VALADKHANI M. New approach for the prediction of Klinkenberg permeability in situ for low permeability sandstone in tight gas reservoir[R]. SPE 152451, 2012.
[21] ZEINIJAHROMI A, VAZ A, BEDRIKOVETSKY P. Well impairment by fines migration in gas fields[J]. Journal of Petroleum Science and Engineering, 2012, 88/89: 125–135. doi: 10.1016/j.petrol.2012.02.002
[22] TIAN Jian, YOU Lijun, LUO Pingya, et al. Experimental investigation on liquid permeability of tight rocks under back pressure conditions[J]. Journal of Petroleum Science and Engineering, 2018, 169: 421–427. doi: 10.1016/j.petrol.2018.06.005
[23] SCHOLZ C H. Mechanism of creep in brittle rock[J]. Journal of Geophysical Research, 1968, 73(10): 3295–3303. doi: 10.1029/JB073i010p03295
[24] BIENIAWSKI Z T. Mechanism of brittle fracture of rock: part I: theory of the fracture process[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1967, 4(4): 395–404.
[25] WINKLER E M. A durability index for stone[J]. Bulletin of the Association of Engineering Geologists, 1986, 23(3): 344–347.
[26] 郑子君,余成. 考虑基质和酸压缝应力敏感性的产能预测模型[J]. 特种油气藏, 2018, 25(4): 76–81. doi: 10.3969/j.issn.1006-6535.2018.04.015 ZHENG Zijun, YU Cheng. Productivity forecasting model with consideration to stress sensitivities of matrix and acid-induced frac-tures[J]. Special Oil & Gas Reservoirs, 2018, 25(4): 76–81. doi: 10.3969/j.issn.1006-6535.2018.04.015
-
期刊类型引用(11)
1. 庞涛,姜在炳,惠江涛,贾秉义. 煤系水平井定向射孔压裂裂缝扩展机制. 煤田地质与勘探. 2024(04): 68-75 . 百度学术
2. 安果涛,谢昕,孔祥伟,王存武. 射孔间距-倾角对深煤层水力裂缝扩展影响的离散元分析. 科学技术与工程. 2024(18): 7623-7629 . 百度学术
3. 杨兆中,杨晨曦,李小刚,闵超. 基于灰色关联的逼近理想解排序法的煤层气井重复压裂选井——以沁水盆地柿庄南区块为例. 科学技术与工程. 2020(12): 4680-4686 . 百度学术
4. 马东民,王传涛,夏玉成,张嘉睿,邵凯,杨甫. 大佛寺井田煤层气井压裂参数优化方案. 西安科技大学学报. 2019(02): 263-269 . 百度学术
5. 李昀昀,傅小康,李千山,孙宁蔚. 我国煤层气排采技术研究现状. 石油化工应用. 2019(04): 1-4+10 . 百度学术
6. 孙宁蔚. 基于灰色关联的沁水盆地煤层气井排采特征分析. 石油化工应用. 2019(11): 7-9+32 . 百度学术
7. 杨兆中,刘云锐,张平,李小刚,易良平. 煤层气直井地层破裂压力计算模型. 石油学报. 2018(05): 578-586 . 百度学术
8. 杨新新,王伟锋,姜帅,杨浩珑. 抗高温高密度低伤害压裂液体系. 断块油气田. 2017(04): 583-586 . 百度学术
9. 张快乐,刘化普. 利用数值试井反演井组低渗透储层参数. 中外能源. 2017(09): 44-48 . 百度学术
10. 李玉伟,贾丹,高睿,高长龙,米洁翰,艾池. 煤岩复杂裂缝长期导流能力实验研究. 天然气与石油. 2017(01): 94-99+11-12 . 百度学术
11. 陈德飞,孟祥娟,周玉,张慧芳,江春明. 岩石破坏后力学特性及其对天然气开采的影响. 断块油气田. 2016(03): 405-408 . 百度学术
其他类型引用(8)