Study on the Influencing Factors of the Properties of Porous Shape Memory Polymer for Well Completion
-
摘要: 由单一相对分子质量多元醇制备的多孔隙形状记忆聚合物的性能无法满足完井的要求,需要采用不同相对分子质量多元醇制备多孔隙形状记忆聚合物。为给制备适用于不同井下条件的多孔隙形状记忆聚合物提供依据,通过改变不同相对分子质量多元醇的质量比,制备了不同的多孔隙形状记忆聚合物,并测试其力学性能、玻璃化温度、热敏性能和观察其孔隙结构,分析了不同相对分子质量多元醇的质量比对其性能的影响规律。低相对分子质量与高相对分子质量多元醇的质量比越大,多孔隙形状记忆聚合物的硬度、压缩强度和弯曲强度越高,玻璃化温度、热形变温度、形变恢复温度和开孔率越低,泡孔尺寸越大,孔型系数和泡孔壁厚越大,结构的各向异性越强。研究表明,通过调整制备原料中不同相对分子质量多元醇的质量比,可获得具有一定力学强度,同时满足不同井下温度条件形状恢复、对不同粒径地层砂具有滤砂过流功能的完井用多孔隙形状记忆聚合物。Abstract: The performance of porous shape memory polymer prepared by single relative molecular mass polyols cannot meet the requirements of well completion, so it is necessary to prepare a porous shape memory polymer with polyols in different relative molecular mass. In order to provide a basis for the preparation of porous shape memory polymers suitable for different downhole conditions, the different porous shape memory polymers are prepared by changing the relative molecular mass ratios of polyols. The influence of relative molecular mass ratios of polyols on their properties were analyzed by testing mechanical properties, glass transition temperature, and thermal sensitivity and by observing the pore structure. Larger relative mass ratio of low relative molecular mass polyols to high relative molecular mass polyols will bring higher hardness, compressive strength and bending strength of porous shape memory polymers; and it will cause lower temperature for glass transition, thermal deformation and the later recovery, and smaller opening rate; moreover, it will lead to larger foaming pore size, pore coefficients and pore wall thicknesses, and stronger structural anisotropy. The research demonstrated that a porous shape memory polymer for well completion can be obtained by adjusting the relative molecular mass ratios of polyols, this kind of polymer for completion has certain mechanical strength, it can meet the requirement for shape recovery under different downhole temperature conditions, possessing the filtering function for formation sands with different radius sizes.
-
-
表 1 不同聚己内酯二醇质量比对多孔隙形状记忆聚合物泡孔尺寸的影响
Table 1 Effect of different mass ratio of polycaprolactone diol on the pore size of porous shape memory polymer
N210与N220
质量比孔径/μm 孔型
系数平行发泡方向 垂直发泡方向 100∶0 370 170 2.18 70∶30 170 230 2.04 50∶50 820 310 2.64 30∶70 1 130 400 2.83 0∶100 1 380 520 2.63 -
[1] 王敏生,光新军,孔令军. 形状记忆聚合物在石油工程中的应用前景[J]. 石油钻探技术,2018,46(5):14–20. WANG Minsheng, GUANG Xinjun, KONG Lingjun. The prospects of applying shape memory polymer in petroleum engineering[J]. Petroleum Drilling Techniques, 2018, 46(5): 14–20.
[2] 光新军,王敏生. 海洋天然气水合物试采关键技术[J]. 石油钻探技术,2016,44(5):45–51. GUANG Xinjun, WANG Minsheng. Key production test technologies for offshore natural gas hydrate[J]. Petroleum Drilling Techniques, 2016, 44(5): 45–51.
[3] SANTOS L, TALEUHANI A D, LI G. Expandable diverting agents to improve efficiency of refracturing treatments[R]. URTRC 2897493, 2017.
[4] MANSOUR A, EZEAKACHA C, TALEUHANI A D, et al. Smart lost circulation materials for productive zones[R]. SPE 187099, 2017.
[5] TALEUHANI A D, LI G, MOAYERI M. The use of temperature-triggered polymers to seal cement voids and fractures in wells[R]. SPE 181384, 2016.
[6] 童征,裴晓含,沈泽俊,等. 橡胶基增强型热致形状记忆复合材料体系[J]. 石油勘探与开发,2016,43(6):1005–1013. TONG Zheng, PEI Xiaohan, SHEN Zejun, et al. An enhanced thermo-actuated shape memory polymer composite coupled with elastomer[J]. Petroleum Exploration and Development, 2016, 43(6): 1005–1013.
[7] 王垚, 李春福, 林元华, 等.SMA在石油工程中的应用研究进展[J].材料导报, 2016, 30(增刊2): 8-102. WANG Yao, LI Chunfu, LIN Yuanhua, et al. Research progress of application of SMA in petroleum engineering[J]. Materials Reports, 2016, 30(supplement 2): 98-102.
[8] OZAN C, van der ZEE W, BRUDY M, et al. Mechanical modeling of shape memory polyurethane foam for application as a sand management solution[R]. SPE 146650, 2011.
[9] 段友智,刘欢乐,艾爽,等. 形状记忆筛管膨胀性能测试[J]. 石油钻探技术,2020,48(4):83–88. doi: 10.11911/syztjs.2020041 DUAN Youzhi, LIU Huanle, AI Shuang, et al. Expansion performance test about temperature sensibility self-expansion screen[J]. Petroleum Drilling Techniques, 2020, 48(4): 83–88. doi: 10.11911/syztjs.2020041
[10] 段友智,艾爽,刘欢乐,等. 形状记忆筛管自充填防砂完井技术[J]. 石油钻探技术,2019,47(5):86–90. DUAN Youzhi, AI Shuang, LIU Huanle, et al. Shape memory screen self-packing sand control completion technology[J]. Petroleum Drilling Techniques, 2019, 47(5): 86–90.
[11] 马丽红. 硬质聚氨酯泡沫塑料研究进展[J]. 石化技术,2016,23(6):24–25. doi: 10.3969/j.issn.1006-0235.2016.06.016 MA Lihong. Research progress of rigid polyurethane foam[J]. Petrochemical Industry Technology, 2016, 23(6): 24–25. doi: 10.3969/j.issn.1006-0235.2016.06.016
[12] 郑晗. 基于聚氨酯的多重形状记忆聚合物的制备与挤出研究[D]. 哈尔滨: 哈尔滨工业大学, 2016. ZHEN Han. Extrusion research and preparation method of multiple shape memory polymer based on polyurethane[D]. Harbin: Harbin Institute of Technology, 2016.
[13] 纪凤龙,胡金莲,狄剑锋,等. 双组分水性形状记忆聚氨酯的合成及其涂层胶应用研究[J]. 聚氨酯工业,2016,31(1):14–17. doi: 10.3969/j.issn.1005-1902.2016.01.007 JI Fenglong, HU Jinlian, DI Jianfeng, et al. The synthesis of two-Component waterborne shape memory polyurethanes and their application in fabric coating[J]. Polyurethane Industry, 2016, 31(1): 14–17. doi: 10.3969/j.issn.1005-1902.2016.01.007
[14] 彭智,郑震,王新灵. 全水发泡阻燃聚氨酯硬质泡沫塑料的制备与性能[J]. 聚氨酯工业,2009,24(1):21–24. PENG Zhi, ZHENG Zhen, WANG Xinling. Preparation and properties of water-blown polyurethane rigid foam with flame retar-dants[J]. Polyurethane Industry, 2009, 24(1): 21–24.
[15] 山口章三郎. 形态记忆[J]. 化学工业,1983,34(10):57–60. YAMAGUCHI Saburo. Shape memory[J]. Chemistry Industry, 1983, 34(10): 57–60.
[16] 周虎,曾坚贤,陈东初,等. 温敏聚氨酯软段的结晶行为及其智能响应特性[J]. 材料研究学报,2010,24(6):579–584. ZHOU Hu, ZENG Jianxian, CHEN Dongchu, et al. The crystalization of soft segment of thermal sensitive polyurethane and its intelligent properties[J]. Chinese Journal of Materials Research, 2010, 24(6): 579–584.
[17] 孙德旭,陈雪,梁伟,等. 聚氨酯类自膨胀防砂材料制备及性能评价[J]. 油田化学,2017,34(2):217–221. SUN Dexu, CHEN Xue, LIANG Wei, et al. Preparation and performance evaluation of polyurethane-expandable material in sand control[J]. Oilfield Chemistry, 2017, 34(2): 217–221.
-
期刊类型引用(4)
1. 白园园. 浮箍浮鞋腐蚀特性分析及预防措施. 现代制造技术与装备. 2024(12): 10-12 . 百度学术
2. 徐星. 套管浮箍浮鞋选型分析及失效预防措施. 石油矿场机械. 2023(03): 68-75 . 百度学术
3. 陈新海,豆惠萍,王乐顶,李立昌,李毅,王锐,杨恺. 钻井用浮箍结构冲蚀安全优化数值模拟研究. 安全与环境工程. 2019(01): 170-176 . 百度学术
4. 李社坤,周战云,任文亮,秦克明,侯平. 大位移水平井旋转自导式套管浮鞋的研制及应用. 石油钻采工艺. 2017(03): 323-327 . 百度学术
其他类型引用(1)