干热岩钻井钻具磨损及防磨技术研究

王恒, 王磊, 张东清, 张进双

王恒, 王磊, 张东清, 张进双. 干热岩钻井钻具磨损及防磨技术研究[J]. 石油钻探技术, 2020, 48(6): 47-53. DOI: 10.11911/syztjs.2020099
引用本文: 王恒, 王磊, 张东清, 张进双. 干热岩钻井钻具磨损及防磨技术研究[J]. 石油钻探技术, 2020, 48(6): 47-53. DOI: 10.11911/syztjs.2020099
WANG Heng, WANG Lei, ZHANG Dongqing, ZHANG Jinshuang. Research on Drilling Tool Wear and Anti-Wear Technology for Hot Dry Rock Drilling[J]. Petroleum Drilling Techniques, 2020, 48(6): 47-53. DOI: 10.11911/syztjs.2020099
Citation: WANG Heng, WANG Lei, ZHANG Dongqing, ZHANG Jinshuang. Research on Drilling Tool Wear and Anti-Wear Technology for Hot Dry Rock Drilling[J]. Petroleum Drilling Techniques, 2020, 48(6): 47-53. DOI: 10.11911/syztjs.2020099

干热岩钻井钻具磨损及防磨技术研究

基金项目: 国家重点研发计划课题“火成岩地区深层地热高效成井关键技术”(编号:2019YFC0604904)、“未固结砂岩热储层保护与增效钻完井技术及材料”(编号:2019YFB1504201)和中国石化科技攻关项目“干热岩高效钻井与热储建造先导试验研究”(编号:P19036)联合资助
详细信息
    作者简介:

    王恒(1990—),男,山东潍坊人,2014年毕业于中国石油大学(华东)石油工程专业,2019年获中国石油大学(华东)油气井工程专业博士学位,助理研究员,现从事油气井管柱力学等方面的研究工作。E-mail:wangheng.sripe@sinopec.com

  • 中图分类号: TE242

Research on Drilling Tool Wear and Anti-Wear Technology for Hot Dry Rock Drilling

  • 摘要: 为了明确干热岩钻井过程中的钻具磨损机理,并采取合适的防磨技术方案来降低钻具磨损,首先分析了井眼内钻柱的运动状态,描述了钻柱与井壁的接触关系,并采用有限单元法建立了钻柱动力学有限元理论分析模型;然后以某干热岩典型实钻井为例,通过求解钻柱动力学模型,分析了钻具与井壁的接触状态;最后以降低钻具与井壁间的接触作用力为目标,探讨了钻具组合和钻进参数对钻具动态特性的影响规律,并进行了钻具组合优化和钻进参数优选,给出了钻具组合、钻进参数防磨推荐技术方案。该防磨技术在某干热岩井钻井作业中进行了试验,进尺116.00 m,稳定器外径磨损3.0 mm,取得了较好的钻具防磨效果。研究给出的钻具组合、钻进参数防磨技术方案,为解决干热岩钻井钻具磨损问题提供了新的技术手段。
    Abstract: In order to clarify the wear mechanism of drilling tools during hot dry rock drilling and propose an appropriate anti-wear technical scheme to alleviate the wear of drilling tools, the motion state of drilling string in the wellbore was first analyzed and the contact relationship between the drilling string and the sidewall was described. Furthermore, the finite element method was used to establish a model for analyzing the drilling string dynamics. Later, by taking the drilling of a typical hot dry rock well as an example, the contact state between the drilling tool and the sidewall was analyzed by solving the dynamic model of the drilling string. Finally, with the goal of reducing the contact force between drilling tool and sidewall, the influence law of BHA (bottom hole assembly) and drilling parameters on the dynamic characteristics of drilling tools were analyzed. In addition, the recommended anti-wear technical scheme of BHA and drilling parameters was proposed through the optimization of BHA and drilling parameters. The technical scheme was then tested and applied in on-site hot dry rock drilling. After drilling 116.00 m, the stabilizer was worn by only 3.0 mm, indicating that a good anti-wear effect was obtained. This technical scheme can provide a new solution to alleviate drilling tool wear in hot dry rock drilling.
  • 图  1   钻柱与井壁的接触示意

    Figure  1.   Contact schematic between drilling string and sidewall

    图  2   不同位置处的钻柱运动状态

    Figure  2.   Motion states of drilling string at different positions

    图  3   不同位置处钻柱与井壁间的接触压力分布

    Figure  3.   Distribution of the contact force between drilling string and sidewall at different positions

    图  4   稳定器与井壁间的相对滑动速度

    Figure  4.   Relative slippage speed between stabilizer and sidewall

    图  5   稳定器与井壁的动态接触压力

    Figure  5.   Dynamic contact force between stabilizer and sidewall

    图  6   稳定器的运动状态

    Figure  6.   Motion state of the stabilizer

    图  7   稳定器与井壁间的动态接触压力

    Figure  7.   Dynamic contact force between stabilizer and sidewall

    图  8   不同转速下稳定器的运动状态

    Figure  8.   Motion states of the stabilizer under different rotary speeds

    图  9   不同转速下稳定器与井壁的动态接触压力

    Figure  9.   Dynamic contact force between stabilizer and sidewall under different rotary speeds

    图  10   不同钻压下稳定器的运动状态

    Figure  10.   Motion states of the stabilizer under different WOB

    图  11   不同钻压下稳定器与井壁的动态接触压力

    Figure  11.   Dynamic contact force between stabilizer and sidewall under different WOB

  • [1] 曾义金. 干热岩热能开发技术进展与思考[J]. 石油钻探技术, 2015, 43(2): 1–7.

    ZENG Yijin. Technical progress and thinking for development of hot dry rock geothermal resources[J]. Petroleum Drilling Techniques, 2015, 43(2): 1–7.

    [2]

    KELKAR S, WOLDEGABRIEL G, REHFELDT K. Lessons learned from the pioneering hot dry rock project at Fenton Hill, USA[J]. Geothermics, 2016, 63: 5–14. doi: 10.1016/j.geothermics.2015.08.008

    [3] 张森琦,吴海东,张杨,等. 青海省贵德县热水泉干热岩体地质—地热地质特征[J]. 地质学报, 2020, 94(5): 1592–1605.

    ZHANG Senqi, WU Haidong, ZHANG Yang, et al. Characteristics of regional and geothermal geology of the Reshuiquan HDR in Guide County, Qinghai Province[J]. Acta Geologica Sinica, 2020, 94(5): 1592–1605.

    [4] 谢文苹,路睿,张盛生,等. 青海共和盆地干热岩勘查进展及开发技术探讨[J]. 石油钻探技术, 2020, 48(3): 77–84. doi: 10.11911/syztjs.2020042

    XIE Wenping, LU Rui, ZHANG Shengsheng, et al. Progress in hot dry rock exploration and a discussion on development technology in the Gonghe Basin of Qinghai[J]. Petroleum Drilling Techniques, 2020, 48(3): 77–84. doi: 10.11911/syztjs.2020042

    [5] 思娜,叶海超,牛新明,等. 油气钻井技术在干热岩开发中的适应性分析[J]. 石油钻探技术, 2019, 47(4): 35–40. doi: 10.11911/syztjs.2019042

    SI Na, YE Haichao, NIU Xinming, et al. Analysis on the adaptability of oil and gas drilling technologies in development for hot dry rocks[J]. Petroleum Drilling Techniques, 2019, 47(4): 35–40. doi: 10.11911/syztjs.2019042

    [6] 叶顺友,杨灿,王海斌,等. 海南福山凹陷花东1R井干热岩钻井关键技术[J]. 石油钻探技术, 2019, 47(4): 10–16. doi: 10.11911/syztjs.2019030

    YE Shunyou, YANG Can, WANG Haibin, et al. Key drilling technologies for hot dry rock in Well HD-1R in the Hainan Fushan Sag[J]. Petroleum Drilling Techniques, 2019, 47(4): 10–16. doi: 10.11911/syztjs.2019030

    [7]

    JANSEN J D. Whirl and chaotic motion of stabilized drill collars[J]. SPE Drilling Engineering, 1992, 7(2): 107–114. doi: 10.2118/20930-PA

    [8] 高宝奎,高德利,谢金稳. 钻柱涡动及其应用[J]. 石油大学学报(自然科学版), 1997, 21(1): 25–27, 115.

    GAO Baokui, GAO Deli, XIE Jinwen. Drillstring whirling and its application[J]. Journal of the University of Petroleum, China (Edition of Natural Science), 1997, 21(1): 25–27, 115.

    [9] 管志川,靳彦欣,王以法. 直井底部钻柱运动状态的实验研究[J]. 石油学报, 2003, 24(6): 102–106. doi: 10.3321/j.issn:0253-2697.2003.06.022

    GUAN Zhichuan, JIN Yanxin, WANG Yifa. Experimental research on motion behavior of bottom drill string in straight hole[J]. Acta Petrolei Sinica, 2003, 24(6): 102–106. doi: 10.3321/j.issn:0253-2697.2003.06.022

    [10] 姚建林,狄勤丰,胡以宝,等. 空气钻井斜直井眼中钻柱的动力学特性及失效机理[J]. 中国石油大学学报(自然科学版), 2008, 32(3): 63–67.

    YAO Jianlin, DI Qinfeng, HU Yibao, et al. Dynamic characteristics and failure mechanism of drill string in straight hole with air drilling[J]. Journal of China University of Petroleum(Edition of Natural Science), 2008, 32(3): 63–67.

    [11] 祝效华,李柯. 铝合金钻杆在长水平井段延伸钻进的可行性[J]. 天然气工业, 2020, 40(1): 88–96. doi: 10.3787/j.issn.1000-0976.2020.01.012

    ZHU Xiaohua, LI Ke. Feasibility of extended drilling of aluminum alloy drill pipes in long horizontal wells[J]. Natural Gas Industry, 2020, 40(1): 88–96. doi: 10.3787/j.issn.1000-0976.2020.01.012

    [12]

    CAYEUX E, SKADSEM H J, CARLSEN L A, et al. Analysis of asymmetric tool-joint wear while drilling long horizontal sec-tions[R]. SPE 191339, 2018.

    [13]

    CAYEUX E, SKADSEM H J, DAIREAUX B, et al. Challenges and solutions to the correct interpretation of drilling friction tests[R]. SPE 184657, 2017.

    [14] 王斌斌,张杨. 钻杆防磨保护套在水平井水平段中的仿真分析[J]. 石油机械, 2006, 34(1): 33–35. doi: 10.3969/j.issn.1001-4578.2006.01.009

    WANG Binbin, ZHANG Yang. Simulation of drill pipe protection tube in horizontal well[J]. China Petroleum Machinery, 2006, 34(1): 33–35. doi: 10.3969/j.issn.1001-4578.2006.01.009

    [15] 赵惠清,张杨. 钻柱接触位置与防磨工具的应用仿真分析[J]. 石油机械, 2007, 35(3): 50–53. doi: 10.3969/j.issn.1001-4578.2007.03.018

    ZHAO Huiqing, ZHANG Yang. Simulation analysis of contact position of drill stem and application of antiwear tool[J]. China Petroleum Machinery, 2007, 35(3): 50–53. doi: 10.3969/j.issn.1001-4578.2007.03.018

    [16] 李子丰. 油气井杆管柱力学研究进展与争论[J]. 石油学报, 2016, 37(4): 531–556. doi: 10.7623/syxb201604013

    LI Zifeng. Research advances and debates on tubular mechanics in oil and gas wells[J]. Acta Petrolei Sinica, 2016, 37(4): 531–556. doi: 10.7623/syxb201604013

    [17]

    ZHU Weiping, DI Qinfeng. Effect of prebent deflection on lateral vibration of stabilized drill collars[J]. SPE Journal, 2011, 16(1): 200–216. doi: 10.2118/120455-PA

    [18]

    STROUD D R H, LINES L A, MINETT-SMITH D J. Analytical and experimental backward whirl simulations for Rotary Steerable bottom hole assemblies[R]. SPE 140011, 2011.

    [19]

    LIU Yongsheng, GAO Deli. A nonlinear dynamic model for characterizing downhole motions of drill-string in a deviated well[J]. Journal of Natural Gas Science and Engineering, 2017, 38: 466–474. doi: 10.1016/j.jngse.2017.01.006

    [20]

    LIU Xianbo, VLAJIC N, LONG Xinhua, et al. Nonlinear motions of a flexible rotor with a drill bit: stick-slip and delay effects[J]. Nonliear Dynamics, 2013, 72(1/2): 61–77.

    [21]

    GUAN Zhichuan, WANG Heng, SHI Yucai, et al. Dynamic behavior analysis of push-the-bit rotary steerable bottom hole assembly[J]. Journal of Mechanical Science and Technology, 2019, 33(4): 1501–1511. doi: 10.1007/s12206-019-0302-5

    [22]

    KHULIEF Y A, Al-NASER H. Finite element dynamic analysis of drillstrings[J]. Finite Elements in Analysis and Design, 2005, 41(13): 1270–1288. doi: 10.1016/j.finel.2005.02.003

    [23] 祝效华,刘清友,童华. 三维井眼全井钻柱系统动力学模型研究[J]. 石油学报, 2008, 29(2): 288–291, 295. doi: 10.3321/j.issn:0253-2697.2008.02.025

    ZHU Xiaohua, LIU Qingyou, TONG Hua. Research on dynamics model of full hole drilling-string system with three-dimensional trajectory[J]. Acta Petrolei Sinica, 2008, 29(2): 288–291, 295. doi: 10.3321/j.issn:0253-2697.2008.02.025

    [24]

    LIAN Zhanghua, ZHANG Qiang, LIN Tiejun, et al. Experimental and numerical study of drill string dynamics in gas drilling of horizontal wells[J]. Journal of Natural Gas Science and Engineering, 2015, 27: 1412–1420. doi: 10.1016/j.jngse.2015.10.005

    [25]

    HU Yibao, DI Qinfeng, ZHU Weiping, et al. Dynamic characteristics analysis of drillstring in the ultra-deep well with spatial curved beam finite element[J]. Journal of Petroleum Science and Engineering, 2012, 82/83(2): 166–173.

    [26]

    WANG Heng, GUAN Zhichuan, SHI Yucai, et al. Modeling and analyzing the motion state of bottom hole assembly in highly deviated wells[J]. Journal of Petroleum Science and Engineering, 2018, 170: 763–771. doi: 10.1016/j.petrol.2018.07.005

    [27] 杨延栋,陈馈,李凤远,等. 盘形滚刀磨损预测模型[J]. 煤炭学报, 2015, 40(6): 1290–1296.

    YANG Yandong,CHEN Kui,LI Fengyuan,et al. Wear prediction model of disc cutter[J]. Journal of China Coal Society, 2015, 40(6): 1290–1296.

  • 期刊类型引用(10)

    1. 杨晓武,李小斌,鄢长灏,刘笑春,王晨. 纳米SiO_2增强型清洁压裂液的制备及性能. 石油化工. 2025(01): 70-77 . 百度学术
    2. 宋兆辉. 树莓状聚合物纳微米封堵剂的制备及性能评价. 石油钻探技术. 2024(03): 84-90 . 本站查看
    3. 朱文波. 新型油基压裂体系制备及对储层损伤的研究. 化学工程师. 2024(07): 51-54 . 百度学术
    4. 杨开吉,张颖,魏强,程艳,刘全刚. 海上油田开发用抗温抗盐乳液聚合物研制与性能评价. 石油钻探技术. 2024(04): 118-127 . 本站查看
    5. 邢亮,董正亮,张衍君,张燕如. 压裂-闷井-返排一体化工作液研究进展. 油田化学. 2024(04): 738-748 . 百度学术
    6. 张辰君,金旭,袁彬,张蕾,郑少婧. 纳米驱油材料提高采收率研究进展、挑战及前景. 西南石油大学学报(自然科学版). 2023(01): 55-70 . 百度学术
    7. 金永辉,王治富,孙庆名,李源流,王波,陈义哲. 致密储层纳米增注技术研究与应用. 特种油气藏. 2023(01): 169-174 . 百度学术
    8. 肖杭州. CL区块登娄库组致密砂岩气藏压裂液体系适应性评价. 特种油气藏. 2023(03): 143-147 . 百度学术
    9. 周明,范振忠,刘庆旺,王旭,仝其雷,王洋洋. 纳米二氧化硅改性及其在提高采收率中的应用. 应用化工. 2023(10): 2958-2962 . 百度学术
    10. 贺东旭. 接枝低分子量配体改性纳米粒子强化乳液研究. 钻采工艺. 2022(05): 128-133 . 百度学术

    其他类型引用(5)

图(11)
计量
  • 文章访问数:  731
  • HTML全文浏览量:  234
  • PDF下载量:  96
  • 被引次数: 15
出版历程
  • 收稿日期:  2020-04-11
  • 修回日期:  2020-08-03
  • 网络出版日期:  2020-08-17
  • 刊出日期:  2020-11-30

目录

    /

    返回文章
    返回