井下安全监控系统设计与实现

张智亮, 王威, 伊明, 刘强

张智亮, 王威, 伊明, 刘强. 井下安全监控系统设计与实现[J]. 石油钻探技术, 2020, 48(6): 65-70. DOI: 10.11911/syztjs.2020094
引用本文: 张智亮, 王威, 伊明, 刘强. 井下安全监控系统设计与实现[J]. 石油钻探技术, 2020, 48(6): 65-70. DOI: 10.11911/syztjs.2020094
ZHANG Zhiliang, WANG Wei, YI Ming, LIU Qiang. Design and Implementation of a Downhole Safety Monitoring System[J]. Petroleum Drilling Techniques, 2020, 48(6): 65-70. DOI: 10.11911/syztjs.2020094
Citation: ZHANG Zhiliang, WANG Wei, YI Ming, LIU Qiang. Design and Implementation of a Downhole Safety Monitoring System[J]. Petroleum Drilling Techniques, 2020, 48(6): 65-70. DOI: 10.11911/syztjs.2020094

井下安全监控系统设计与实现

基金项目: 国家科技重大专项课题“西部山前复杂地层安全快速钻完井技术”(编号:2011ZX05021-001)和中国博士后科学基金资助项目(编号:2019M663865)联合资助
详细信息
    作者简介:

    张智亮(1984—),男,四川隆昌人,2006年毕业于西南石油大学过程装备与控制工程专业,2018年获中国石油大学(北京)动力工程及工程热物理专业博士学位,高级工程师,主要从事动力工程及工程热物理、机械工程等方面的研究工作。E-mail:280238724@qq.com

  • 中图分类号: TE28

Design and Implementation of a Downhole Safety Monitoring System

  • 摘要: 针对目前国内井下故障频发,而预警效率低、安全监测技术较为滞后的问题,设计研制了一种具有自主知识产权的井下安全监控系统。该系统可以直接测量近钻头力学参数和工程参数,利用钻井液脉冲将所测参数实时传输至钻井风险分析评估模块,该模块通过分析计算接收到的数据判断钻井风险类型,并评估风险等级。现场试验表明,井下安全监控系统功能完善、性能稳定,风险评估准确率大于95%,部分技术指标达到了国外同类监测系统的水平。研究表明,井下安全监控系统可以降低深部复杂地层钻井风险和钻井成本、解决深部复杂地层井下故障预警效率低等问题,可以产生较大的经济效益。
    Abstract: In order to solve the problems of frequent downhole safety accidents, low early-warning efficiency, lagging safety monitoring technology in China, a downhole safety monitoring system with independent intellectual property rights was designed and developed. This system directly measures near-bit mechanical parameters and engineering parameters, and transmits the measured parameters to the drilling risk analysis and assessment module in real time by using the drilling fluid pulse, by which the received data can be analyzed and calculated to determine the type of drilling risk and assess the risk level. Field tests confirmed that the downhole safety system is fully functional and has a stable performance. The accuracy rate of the risk assessment is higher than 95%, and some technical indexes have reached the level of similar monitoring system abroad. The research show that the downhole safety monitoring system could reduce the drilling risk and drilling cost in deep complex formations. It could create great economic benefits for it has solved the problem of low early warning efficiency of downhole safety accidents.
  • 图  1   井下安全监控系统工作原理

    Figure  1.   Working principle of the downhole safety monitoring system

    图  2   井下安全监控系统组成

    Figure  2.   Components of the downhole safety monitoring system

    图  3   井下参数测量模块结构示意

    Figure  3.   Structure diagram of the downhole parameters measuring module

    图  4   钻井工具钻压、弯矩、扭矩标定试验台

    Figure  4.   Calibration test bench for weight on bit, bending moment and torque of drilling tools

    图  5   电路设计方案

    Figure  5.   Design scheme of circuit

    图  6   信号处理流程

    Figure  6.   Signal processing flow

    图  7   钻井风险实时分析评估过程

    Figure  7.   Drilling risk real-time analysis and assessment process

    表  1   井下安全监控系统现场试验情况

    Table  1   Field test of the downhole safety monitoring system

    阶段油田井名试验井段/m工作时间/h机械钻速提高率,%备注
    原理样机功能试验新疆油田T83002井2 026.00~2 070.0042无故障
    新疆油田阜北3井3 682.00~3 739.0049无故障
    新疆油田沙130井1 928.00~2 195.00150 无故障
    新疆油田JL230井4 250.00~4 395.0023无故障
    定型吐哈油田恰10-5井670.00~896.005210无故障
    新疆油田玛607井3 446.00~3 453.005310无故障
    3 676.00~3 821.00158
    新疆油田BT1185井1 800.00~2 380.00177 40无故障
    效果验证塔里木油田英买49井5 510.00~5 590.00108 30无故障
    青海油田圆探1井4 603.00~4 840.00236 10无故障
    4 847.00~4 950.00
    新疆油田玛湖15井4 000.00~4 033.003325无故障
    塔里木油田牙哈304H井4 936.00~5 122.005520无故障
    下载: 导出CSV

    表  2   井下安全监控系统与国外同类监控系统的技术指标对比

    Table  2   Comparison between technical indexes of the downhole safety monitoring system and those of the similar monitoring systems abroad

    名称钻压弯矩扭矩振动压力转速
    CoPilot井下随钻诊断系统量程±375 kN±113 kN·m±38 kN·m±50g0~138 MPa–500~1 000 r/min
    分辨率<60 N<3 N·m<2 N·m<0.002g<7 kPa
    误差±0.2%±0.9%±1.9%±5.0%0.25%<1 r/min
    井下安全监控系统量程±400 kN±113 kN·m±40 kN·m±62.5g0~138 MPa±360 r/min
    分辨率<78 N<34 N·m<23 N·m<0.008g<5 kPa
    误差±0.6%±0.4%±2.0%±5.0%0.05%<1 r/min
     注:①为相对误差;②为绝对误差。
    下载: 导出CSV
  • [1]

    ALDRED W, PLUMB D, BRADFORD I, et al. Managing drilling risk[J]. Oilfield Review, 1999, 11(2): 2–19.

    [2] 李琪,常笃,徐英卓,等. 基于知识集成的石油钻井风险管理系统研究[J]. 石油学报, 2009, 30(5): 755–759. doi: 10.3321/j.issn:0253-2697.2009.05.022

    LI Qi, CHANG Du, XU Yingzhuo, et al. Drilling risk management system based on knowledge integration[J]. Acta Petrolei Sinica, 2009, 30(5): 755–759. doi: 10.3321/j.issn:0253-2697.2009.05.022

    [3]

    HEISIG G, NEUBERT M. Lateral drillstring vibrations in extended-reach wells[R]. SPE 59235, 2000.

    [4]

    POLITIS N P. An approach for efficient analysis of drill-string random vibrations[D]. Houston: Rice University, 2017.

    [5]

    BAIRD J A, CASKEY B C, WORMLEY D N, et al. Geodyn2: a bottom hole assembly/geological formation dynamic interaction computer program[R]. SPE 14328, 1985.

    [6]

    BRAKEL J D, AZAR J J. Prediction of wellbore trajectory considering bottomhole assembly and drill-bit dynamics[J]. SPE Drilling Engineering, 1989, 4(2): 109–118. doi: 10.2118/16172-PA

    [7] 温庆阳.基于软计算理论的深井复杂地层钻井系统风险评估研究[D].青岛: 中国石油大学(华东), 2012.

    WEN Qingyang. Risk assessment study of drilling system for deep well complex formation based on soft computing theory[D]. Qingdao: China University of Petroleum(East China), 2012.

    [8] 赵宝祥,陈江华,徐一龙,等. 北部湾盆地开发井表层钻井模式[J]. 石油钻采工艺, 2015, 37(6): 23–26.

    ZHAO Baoxiang, CHEN Jianghua, XU Yilong, et al. The pattern of surface drilling in development wells of Beibu Gulf Basin[J]. Oil Drilling & Production Technology, 2015, 37(6): 23–26.

    [9] 曾义金. 海相碳酸盐岩超深油气井安全高效钻井关键技术[J]. 石油钻探技术, 2019, 47(3): 25–33.

    ZENG Yijin. Key technologies for safe and efficient drilling of marine carbonate ultra-deep oil and gas wells[J]. Petroleum Drilling Techniques, 2019, 47(3): 25–33.

    [10] 黄凯文,徐一龙,李磊,等. 南海西部油田北部湾难钻地层钻井提速技术[J]. 石油钻采工艺, 2013, 35(5): 20–23, 28. doi: 10.3969/j.issn.1000-7393.2013.05.004

    HUANG Kaiwen, XU Yilong, LI Lei, et al. ROP acceleration technology for poor drillability formation at Beibuwan Basin in the West of South China Sea Oilfield[J]. Oil Drilling & Production Technology, 2013, 35(5): 20–23, 28. doi: 10.3969/j.issn.1000-7393.2013.05.004

    [11] 陈锐,李黔,尹虎,等. 钻井风险实时监测与诊断系统设计及应用[J]. 断块油气田, 2013, 20(1): 115–117.

    CHEN Rui, LI Qian, YIN Hu, et al. Design and application of drilling risk real-time monitoring and diagnose system[J]. Fault-Block Oil & Gas Field, 2013, 20(1): 115–117.

    [12] 林四元,张杰,韩成,等. 东方气田浅部储层大位移水平井钻井关键技术[J]. 石油钻探技术, 2019, 47(5): 17–21.

    LIN Siyuan, ZHANG Jie, HAN Cheng, et al. Key technology for horizontal well of extended reach drilling in the shallow reservoirs of the Dongfang Gas Field[J]. Petroleum Drilling Techniques, 2019, 47(5): 17–21.

    [13] 李宁,周小君,周波,等. 塔里木油田HLHT区块超深井钻井提速配套技术[J]. 石油钻探技术, 2017, 45(2): 10–14.

    LI Ning, ZHOU Xiaojun, ZHOU Bo, et al. Technologies for fast drilling ultra-deep wells in the HLHT Block, Tarim Oilfield[J]. Petroleum Drilling Techniques, 2017, 45(2): 10–14.

  • 期刊类型引用(11)

    1. 翁定为,孙强,梁宏波,雷群,管保山,慕立俊,刘汉斌,张绍林,柴麟,黄瑞. 低渗透老油田柔性侧钻水平井挖潜技术. 石油勘探与开发. 2025(01): 194-203 . 百度学术
    2. 卢聪,李秋月,郭建春. 分布式光纤传感技术在水力压裂中的研究进展. 油气藏评价与开发. 2024(04): 618-628 . 百度学术
    3. 叶志权,肖雷,王丽峰,薛浩楠,王晗. 小井眼连续油管多簇射孔填砂分段压裂技术——以百口泉油田百1断块X井为例. 油气井测试. 2023(01): 33-37 . 百度学术
    4. 李娜. 水平井分段多簇压裂技术影响因素. 化学工程与装备. 2023(07): 97-98 . 百度学术
    5. 柳军,杜智刚,牟少敏,王睦围,张敏,殷腾,俞海,曹大勇. 连续油管分簇射孔管柱通过能力分析模型及影响因素研究. 特种油气藏. 2022(05): 139-148 . 百度学术
    6. 张文康. 长庆油田陇东地区页岩油水平井细分切割压裂技术. 石化技术. 2022(12): 139-141 . 百度学术
    7. 邹立萍,邹昌柏. 关于水平井压裂工艺技术现状及展望. 当代化工研究. 2021(10): 7-8 . 百度学术
    8. 苗娟,黄兵,谢力,汤明. 高钢级套管段铣工具优化及性能评价. 特种油气藏. 2021(02): 163-170 . 百度学术
    9. 李杉杉,孙虎,张冕,池晓明,刘欢. 长庆油田陇东地区页岩油水平井细分切割压裂技术. 石油钻探技术. 2021(04): 92-98 . 本站查看
    10. 谢慧华,马青印,辛红伟,田相元,孔春岩,贺亚杰. 文留油田盐间油藏深部双层套管开窗侧钻技术. 断块油气田. 2021(05): 706-710 . 百度学术
    11. 李海涛,罗红文,向雨行,安树杰,李颖,蒋贝贝,谢斌,辛野. DTS/DAS技术在水平井压裂监测中的应用现状与展望. 新疆石油天然气. 2021(04): 62-73 . 百度学术

    其他类型引用(6)

图(7)  /  表(2)
计量
  • 文章访问数:  945
  • HTML全文浏览量:  252
  • PDF下载量:  115
  • 被引次数: 17
出版历程
  • 收稿日期:  2020-03-18
  • 修回日期:  2020-06-28
  • 网络出版日期:  2020-07-17
  • 刊出日期:  2020-11-30

目录

    /

    返回文章
    返回