考虑壁面滑移效应的高密度油基钻井液流变性研究

李文哲, 钟成旭, 蒋雪梅, 李郑涛, 曹世平, 吴双

李文哲, 钟成旭, 蒋雪梅, 李郑涛, 曹世平, 吴双. 考虑壁面滑移效应的高密度油基钻井液流变性研究[J]. 石油钻探技术, 2020, 48(6): 28-32. DOI: 10.11911/syztjs.2020085
引用本文: 李文哲, 钟成旭, 蒋雪梅, 李郑涛, 曹世平, 吴双. 考虑壁面滑移效应的高密度油基钻井液流变性研究[J]. 石油钻探技术, 2020, 48(6): 28-32. DOI: 10.11911/syztjs.2020085
LI Wenzhe, ZHONG Chengxu, JIANG Xuemei, LI Zhengtao, CAO Shiping, WU Shuang. Study of the Rheological Properties of High-Density Oil-Based Drilling Fluid Considering Wall Slip Effect[J]. Petroleum Drilling Techniques, 2020, 48(6): 28-32. DOI: 10.11911/syztjs.2020085
Citation: LI Wenzhe, ZHONG Chengxu, JIANG Xuemei, LI Zhengtao, CAO Shiping, WU Shuang. Study of the Rheological Properties of High-Density Oil-Based Drilling Fluid Considering Wall Slip Effect[J]. Petroleum Drilling Techniques, 2020, 48(6): 28-32. DOI: 10.11911/syztjs.2020085

考虑壁面滑移效应的高密度油基钻井液流变性研究

基金项目: 中国石油西南油气田分公司科技计划项目“泸州区块深层页岩气水平井钻完井技术研究”(编号:20180302-12)、四川长宁天然气开发有限公司科研项目“深层页岩气水平井钻完井技术研究”(编号:20180601-18)联合资助
详细信息
    作者简介:

    李文哲(1987—),男,黑龙江齐齐哈尔人,2010年毕业于成都理工大学石油工程专业,工程师,主要从事页岩气钻井工程技术研究与管理工作。E-mail:lwz9@petrochina.com.cn

  • 中图分类号: TE254+.1

Study of the Rheological Properties of High-Density Oil-Based Drilling Fluid Considering Wall Slip Effect

  • 摘要: 壁面滑移效应会严重影响高密度油基钻井液流变性测量的准确性,需要对其进行检测和校正。基于Tikhonov正则化方法,建立了高密度油基钻井液流变性测量过程中的壁面滑移效应校正方法;利用六速旋转黏度计,进行了考虑滑移效应的深层页岩气井现场高密度油基钻井液流变性测量试验,分析了高密度油基钻井液壁面滑移特性,优选流变模型并计算了流变参数。计算结果表明,与校正前的流变参数相比,滑移校正后的深层页岩气井现场高密度油基钻井液的动切力更小,而流性指数更大且接近于1.00,其真实流变性可用宾汉模型表达;壁面剪切应力大于临界剪切应力时,滑移速度随壁面剪切应力增大而呈指数增大。研究结果表明,测量高密度油基钻井液流变性时会产生滑移效应,滑移校正前后的流变模式与流变参数存在明显差异,因此应消除滑移效应的影响。
    Abstract: Wall slip effect seriously affects the accurate measurement of the rheological properties of high-density oil-based drilling fluids, and it needs careful detection and correction. A correction method for the wall slip effect during the measurement of the rheological properties of high-density oil-based drilling fluids was established based on the Tikhonov regularization method. Rheological property measurement experiments of high-density oil-based drilling fluids in deep shale gas wells considering wall slip effect were carried out using a six-speed rotational viscometer, and the wall slip characteristics of high-density oil-based drilling fluids were analyzed. The rheological model was optimized and the rheological parameters were calculated. The calculation results demonstrate that, when compared with the rheological parameters before correction, the dynamic shear force of high-density oil-based drilling fluids in deep shale gas wells is reduced after correction, while the liquidity index is increased to nearly 1.00. The results demonstrate the real rheological properties can be expressed by Bingham model. When the wall shear stress is higher than the critical shear stress, the slip velocity will increase exponentially with increasing wall shear stress.The results show that a slip effect exists during the measurement of the rheological properties of high-density oil-based drilling fluids. It demonstrates, too, that the rheological model and rheological parameters before and after slip correction are significantly different, and the influence of slip effect should be eliminated for accurate measurement.
  • 图  1   同轴圆筒旋转黏度计环隙结构及流场示意

    Figure  1.   The annular structure and flow field diagram for a coaxial cylinder rotational viscometer

    图  2   足-206井井浆样品流变性曲线

    Figure  2.   Rheological property curves of the drilling fluids from Well Zu-206

    图  3   泸-207井井浆样品流变性曲线

    Figure  3.   Rheological property curves of the drilling fluids from Well Lu-207

    图  4   宁227井井浆样品流变性曲线

    Figure  4.   Rheological property curves for the drilling fluids from Well Ning 227

    图  5   壁面滑移速度与剪切应力的变化关系

    Figure  5.   Relationship between wall slip velocity and shear stress

    表  1   滑移校正前后高密度油基钻井液流变参数

    Table  1   Rheological parameters of high-density oil-based drilling fluids before and after slip correction

    钻井液来源环空间隙1.17 mm 环空间隙2.17 mm 校正结果
    τ0/PaK /(Pa·snnR2 τ0/PaK /(Pa·snnR2 τ0/PaK /(Pa·snnR2
    足-206井5.9700.283 90.890.995 85 3.7400.311 10.920.998 76 2.7200.233 61.000.999 99
    泸-207井6.1200.577 40.780.993 54 6.2480.375 10.890.993 32 2.9800.293 21.000.999 96
    宁227井7.1700.662 90.770.986 53 5.4070.668 20.810.993 17 3.9500.428 60.980.999 97
    下载: 导出CSV

    表  2   壁面滑移速度与剪切应力拟合结果

    Table  2   Parameter fitting results of the wall slip velocity and shear stress correlation

    钻井液来源abτwc /PaR2
    足-206井0.002 940.9418.970.953 76
    泸-207井0.002 461.0924.980.996 81
    宁227井0.003 460.9628.810.959 84
    下载: 导出CSV
  • [1] 李茂森, 刘政, 胡嘉. 高密度油基钻井液在长宁—威远区块页岩气水平井中的应用[J]. 天然气勘探与开发, 2017, 40(1): 88–92.

    LI Maosen, LIU Zheng, HU Jia. Application of high density oil-based drilling fluid in shale gas horizontal wells of Changning-Weiyuan Bolck[J]. Natural Gas Exploration and Deveopment, 2017, 40(1): 88–92.

    [2] 凡帆, 王京光, 蔺文洁. 长宁区块页岩气水平井无土相油基钻井液技术[J]. 石油钻探技术, 2016, 44(5): 34–39.

    FAN Fan, WANG Jingguang, LIN Wenjie. Clay-free oil based drilling fluid technology for shale gas horizontal wells in the Changning Block[J]. Petroleum Drilling Techniques, 2016, 44(5): 34–39.

    [3] 陈在君. 高密度无土相油基钻井液研究及在四川页岩气水平井的应用[J]. 钻采工艺, 2015, 38(5): 70–72. doi: 10.3969/J.ISSN.1006-768X.2015.05.22

    CHEN Zaijun. Development of high density clay-free oil-based drilling fluid and its application in Sichuan shale gas horizontal well[J]. Drilling & Production Technology, 2015, 38(5): 70–72. doi: 10.3969/J.ISSN.1006-768X.2015.05.22

    [4] 何涛, 李茂森, 杨兰平, 等. 油基钻井液在威远地区页岩气水平井中的应用[J]. 钻井液与完井液, 2012, 29(3): 1–5. doi: 10.3969/j.issn.1001-5620.2012.03.001

    HE Tao, LI Maosen, YANG Lanping, et al. Application of oil-based drilling fluid in shale gas horizontal well in District of Weiyuan[J]. Drilling Fluid & Completion Fluid, 2012, 29(3): 1–5. doi: 10.3969/j.issn.1001-5620.2012.03.001

    [5] 樊好福, 臧艳彬, 张金成, 等. 深层页岩气钻井技术难点与对策[J]. 钻采工艺, 2019, 42(3): 20–23. doi: 10.3969/J.ISSN.1006-768X.2019.03.06

    FAN Haofu, ZANG Yanbin, ZHANG Jincheng, et al. Technical difficulties and countermeaures of deep shale gas drilling[J]. Drilling & Production Technology, 2019, 42(3): 20–23. doi: 10.3969/J.ISSN.1006-768X.2019.03.06

    [6] 臧艳彬. 川东南地区深层页岩气钻井关键技术[J]. 石油钻探技术, 2018, 46(3): 7–12.

    ZANG Yanbin. Key drilling technology for deep shale gas reservoirs in the Southeastern Sichuan Region[J]. Petroleum Drilling Techniques, 2018, 46(3): 7–12.

    [7]

    DOKHANI V, MA Yue, YU Mengjiao. Determination of equivalent circulating density of drilling fluids in deepwater drilling[J]. Journal of Natural Gas Science and Engineering, 2016, 34: 1096–1105. doi: 10.1016/j.jngse.2016.08.009

    [8]

    FERNANDES R R, TUREZO G, ANDRADE D E V, et al. Are the rheological properties of water-based and synthetic drilling fluids obtained by the Fann 35A viscometer reliable?[J]. Journal of Petroleum Science and Engineering, 2019, 177: 872–879. doi: 10.1016/j.petrol.2019.02.063

    [9]

    MOONEY M. Explicit formulas for slip and fluidity[J]. Journal of Rheology, 1931, 2(2): 210–222. doi: 10.1122/1.2116364

    [10] 马修元, 段钰锋, 刘猛, 等. 水焦浆的流变特性与壁面滑移效应[J]. 化工学报, 2012, 63(1): 51–58. doi: 10.3969/j.issn.0438-1157.2012.01.007

    MA Xiuyuan, DUAN Yufeng, LIU Meng, et al. Wall slip behavior and rheological characteristics of coke/water slurry[J]. Journal of Chemical Industry and Engineering, 2012, 63(1): 51–58. doi: 10.3969/j.issn.0438-1157.2012.01.007

    [11]

    MA Xiuyuan, DUAN Yufeng, LI Huafeng. Wall slip and rheological behavior of petroleum-coke sludge slurries flowing in pipelines[J]. Powder Technology, 2012, 230: 127–133. doi: 10.1016/j.powtec.2012.07.019

    [12]

    BRUNN P, MULLER M, BSCHORER S. Slip of complex fluids in viscometry[J]. Rheologica Acta, 1996, 35(3): 242–251. doi: 10.1007/BF00366911

    [13] 王贵, 蒲晓林, 罗兴树, 等. 考虑滑移效应的高密度水基钻井液流变特性[J]. 石油学报, 2011, 32(3): 539–542. doi: 10.7623/syxb201103028

    WANG Gui, PU Xiaolin, LUO Xingshu, et al. Rheological behaviors of the high-density water-based drilling fluid in consideration of slip effect[J]. Acta Petrolei Sinica, 2011, 32(3): 539–542. doi: 10.7623/syxb201103028

    [14]

    YOSHIMURA A S, PRUD’HOMME R K. Viscosity measurements in the presence of wall slip in capillary, Couette, and parallel-disk geometries[J]. SPE Reservoir Engineering, 1988, 3(2): 735–742. doi: 10.2118/14696-PA

    [15]

    de HOOG F R, ANDERSSEN R S. Regularization of first kind integral equations with application to Couette viscometry[J]. Journal of Integral Equations and Applications, 2006, 18(2): 249–265. doi: 10.1216/jiea/1181075381

    [16]

    YEOW Y L, KO W C, TANG P P P. Solving the inverse problem of Couette viscometry by Tikhonov regularization[J]. Journal of Rheology, 2000, 44(6): 1335–1351. doi: 10.1122/1.1308520

    [17]

    WEESE J. A regularization method for nonlinear ill-posed problems[J]. Computer Physics Communications, 1993, 77(3): 429–440. doi: 10.1016/0010-4655(93)90187-H

    [18]

    WANG Gui, DU Hui, GUO Boyun. Determination of viscosity and wall slip behavior of a polymer-gel used for leakage control from Couette viscometry data[J]. Journal of Energy Resources Technology, 2018, 140(3): 032910. doi: 10.1115/1.4038384

    [19]

    YEOW Y L, CHOON B, KARNIAWAN L, et al. Obtaining the shear rate function and the slip velocity function from Couette viscometry data[J]. Journal of Non-Newtonian Fluid Mechanics, 2004, 124(1): 43–49.

    [20]

    LEONG Y-K, YEOW Y L. Obtaining the shear stress shear rate relationship and yield stress of liquid foods from Couette viscometry data[J]. Rheologica Acta, 2003, 42(4): 365–371. doi: 10.1007/s00397-002-0283-6

  • 期刊类型引用(10)

    1. 周涛,侯红意,陶亮,艾超. 渤海油田注水井环空保护封隔器的研制与应用. 工程机械. 2022(03): 96-104+13 . 百度学术
    2. 杜福云,刘国振,郭雯霖,张立波,郑金中,陈磊,李英松. 高性能注水井生产封隔器研制与试验. 机械工程师. 2021(05): 142-144 . 百度学术
    3. 李顺,贺启强,周大志,寸锡宏,任兆林,刘艳霞. 注水井环空带压统计分析及治理改进方向. 当代石油石化. 2021(05): 26-28 . 百度学术
    4. 韩祥海,平恩顺,安小萍,王林,贺燕飞,王志民,黄峰. 带压投送井口保护装置的研制及应用. 钻采工艺. 2021(04): 86-89 . 百度学术
    5. 宋辉辉,任从坤,任兆林,张福涛,田俊,刘艳霞. 海上油田分层防砂分层注水高效集成技术. 石油钻采工艺. 2021(03): 384-388 . 百度学术
    6. 刘红兰. 胜利海上油田安全可控长效分层注水技术. 石油钻探技术. 2019(01): 83-89 . 本站查看
    7. 张技. 油田安全环保隐患成因分析及治理技术探析. 石化技术. 2019(05): 235+237 . 百度学术
    8. 李勇. 埕岛油田长效细分注水关键技术及应用. 石油机械. 2019(10): 94-100 . 百度学术
    9. 杨建政. 适合海上低渗气田水平井固井的柔性水泥浆体系研究. 化工管理. 2019(32): 224 . 百度学术
    10. 刘红兰. 分层注水井测调一体化新技术. 石油钻探技术. 2018(01): 83-89 . 本站查看

    其他类型引用(0)

图(5)  /  表(2)
计量
  • 文章访问数:  705
  • HTML全文浏览量:  298
  • PDF下载量:  89
  • 被引次数: 10
出版历程
  • 收稿日期:  2020-02-17
  • 修回日期:  2020-06-22
  • 网络出版日期:  2020-07-30
  • 刊出日期:  2020-11-30

目录

    /

    返回文章
    返回