Research and Application of Tough Cement Slurry Systems with Multi-Scale Fiber
-
摘要: 针对油井水泥石脆性大、抗拉强度低、抗冲击和抗破裂性能差等问题,优选了3种不同尺度的无机纤维,并通过正交试验进行复配,形成了多尺度纤维增韧剂BCE-230S。考察了BCE-230S加量对水泥浆性能及对应水泥石力学性能的影响,确定了其最佳加量,形成了多尺度纤维韧性水泥浆体系。性能评价试验结果显示,与普通水泥石相比,多尺度纤维韧性水泥石的劈裂抗拉强度、抗压强度及抗冲击功显著提高,杨氏模量显著下降,且水泥浆性能良好。多尺度纤维韧性水泥浆体系在冀东油田低渗透油藏应用了10余井次,2个胶结面的胶结质量较邻井显著提高,后期压裂顺利,试油未见层间窜流。研究结果表明,多尺度纤维韧性水泥浆体系能够解决油井水泥石易脆裂的问题,可以保障井筒密封完整性和固井长期封固质量,具有广泛的应用前景。Abstract: To solve the problems of high brittleness, low tensile strength, poor impact resistance and fracture resistance of the cement stone in oil wells, a multi-scale fiber toughener BCE-230S was formed by selecting inorganic fibers in three different scales and conducting orthogonal tests for compound. In addition, the effects of the dosage of BCE-230S on the construction performance of cement slurry and the mechanical properties of cement were investigated, the optimal dosage was determined, by which a tough cement slurry system with multi-scale fiber was formed. The results showed that the splitting tensile strength, compressive strength and impact resistance of the cement stone were significantly improved when compared with common cement.Young’s modulus decreased significantly and the construction performance was ideal. The tough cement slurry system with multi-scale fiber was applied in the low permeability reservoir in the Jidong Oilfield for more than 10 times in the well, and the cementing quality of the two cementing surfaces was measurably improved compared with that of adjacent wells. Fracturing in later stage was successful, and no fluid channeling was observed during well testing. The results indicated that the tough cement slurry system with multi-scale fiber can effectively solve the problem of brittleness of cement stone in oil well, so as to ensure the integrity of the wellbore and the long-term cementing quality, with a potential for wide application.
-
Keywords:
- low permeability reservoir /
- cementing /
- multi-scale fiber /
- toughener /
- cement slurry /
- mechanical property
-
-
表 1 无机纤维的基本物性参数
Table 1 Basic parameters of inorganic fibers
纤维种类 级别 主要成分 长度/μm 直径/μm 密度/(g∙cm–3) 拉伸强度/GPa 拉伸模量/GPa 纤维A 纳米级 碳化硅、氧化铁 50~100 0.1~0.6 3.21 10.0 550 纤维B 微米级 氧化硅、氧化钙 20~90 1.0~5.0 2.80 20.0 180 纤维C 毫米级 氧化镁、氧化铝 2 000~3 000 7.0~30.0 2.80 3.5 100 表 2 3种纤维对水泥石力学性能的影响
Table 2 Effects of three kinds of fibers on mechanical properties of cement
纤维种类 最佳加
量,%抗拉强度
提高程度,%抗冲击功
提高程度,%抗压强度
提高程度,%杨氏模量
下降程度,%抗压强度/杨氏模量
提高程度,%纤维A 1.0 11.71 20.47 7.14 8.71 17.28 纤维B 5.0 17.14 17.29 2.06 16.90 22.87 纤维C 1.0 24.76 20.51 4.28 10.83 16.87 表 3 正交试验设计方案及结果
Table 3 Design scheme and results of the orthogonal test
序号 纤维A加量,% 纤维B加量,% 纤维C加量,% 抗拉强
度提高
程度,%抗冲击
功提高
程度,%抗压强度/杨氏模量提高程度,% 1 0.5 4.5 0.5 15.51 19.33 14.23 2 0.5 5.0 1.0 22.35 22.46 21.21 3 0.5 5.5 1.5 17.55 24.16 18.36 4 1.0 4.5 1.0 21.07 22.36 19.21 5 1.0 5.0 1.5 15.55 24.27 21.49 6 1.0 5.5 0.5 13.17 19.78 18.16 7 1.5 4.5 1.5 14.22 23.65 17.15 8 1.5 5.0 0.5 13.29 19.26 20.44 9 1.5 5.5 1.0 23.16 22.21 19.11 表 4 抗拉强度极差分析
Table 4 Range analysis of tensile strength
因素 抗拉强度提高程度,% 极差R 最优方案 K1 K2 K3 纤维A 18.47 16.60 16.89 1.87 A1 纤维B 16.93 17.06 17.96 1.03 B3 纤维C 13.99 22.19 15.77 8.20 C2 表 6 抗压强度/杨氏模量极差分析
Table 6 Range analysis of compressive strength/Young’s modulus
因素 抗压强度/杨氏模量提高程度,% 极差R 最优方案 K1 K2 K3 纤维A 17.93 19.62 18.90 1.69 A2 纤维B 16.86 21.05 18.54 4.18 B2 纤维C 17.61 19.84 19.00 2.23 C2 表 5 抗冲击功极差分析
Table 5 Range analysis of impact resistance
因素 抗冲击功提高程度,% 极差R 最优方案 K1 K2 K3 纤维A 21.98 22.14 21.71 0.43 A2 纤维B 21.78 22.00 22.05 0.27 B3 纤维C 19.46 22.34 24.03 4.57 C3 表 7 不同配比方案下的水泥石力学性能试验结果
Table 7 Experimental results of mechanical properties of cement with different proportion schemes
配比方案 纤维配比 抗拉强度提高程度,% 抗冲击功提高程度,% 抗压强度/杨氏模量提高程度,% 1 纤维A∶纤维B∶纤维C=1∶11∶2 24.33 19.77 19.23 2 纤维A∶纤维B∶纤维C=2∶11∶3 18.39 23.37 17.05 3 纤维A∶纤维B∶纤维C=1∶5∶1 23.17 22.57 22.71 表 8 BCE-230S加量对水泥浆流变性能的影响
Table 8 Effect of BCE-230S dosage on rheological properties of cement slurry
BCE-230S加量,% 六速旋转黏度计读数 ϕ3 ϕ6 ϕ100 ϕ200 ϕ300 0 3 5 58 105 148 3.0 5 8 63 121 182 5.0 7 13 92 151 209 7.0 7 13 129 216 290 表 9 BCE-230S加量对水泥浆滤失量及稠化性能的影响
Table 9 Effect of BCE-230S dosage on fluid loss and the thickening properties of cement slurry
BCE-230S加量,% 稠化时间/min API滤失量/mL 0 175 46 3.0 176 44 5.0 167 46 7.0 173 44 -
[1] 路保平,丁士东. 中国石化页岩气工程技术新进展与发展展望[J]. 石油钻探技术, 2018, 46(1): 1–9. LU Baoping, DING Shidong. New progress and development prospect in shale gas engineering technologies of Sinopec[J]. Petroleum Drilling Techniques, 2018, 46(1): 1–9.
[2] 刘硕琼,齐奉忠. 中国石油固井面临的挑战及攻关方向[J]. 石油钻探技术, 2013, 41(6): 6–11. doi: 10.3969/j.issn.1001-0890.2013.06.002 LIU Shuoqiong, QI Fengzhong. Challenges and development trends of cementing technology in CNPC[J]. Petroleum Drilling Techniques, 2013, 41(6): 6–11. doi: 10.3969/j.issn.1001-0890.2013.06.002
[3] 刘仍光,周仕明,陶谦,等. 掺橡胶乳液和弹性粒子柔性油井水泥石的微结构[J]. 硅酸盐学报, 2015, 43(10): 1475–1482. LIU Rengguang, ZHOU Shiming, TAO Qian, et al. Microstructure of flexible oil-well cement stone mixed with latex and elastic particle[J]. Journal of the Chinese Ceramic Society, 2015, 43(10): 1475–1482.
[4] 邹双, 邹建龙, 赵宝辉, 等.一种高抗压强度、低杨氏模量固井韧性水泥组合物: CN201611089455.0[P].2017-05-31. ZOU Shuang, ZOU Jianlong, ZHAO Baohui, et al. A toughness cement matrix composites with high compressive strength and low Young’s modulus: CN201611089455.0[P]. 2017-05-31.
[5] 武治强,刘书杰,耿亚楠,等. 高温高压高含硫气井固井水泥环封隔能力评价技术[J]. 石油钻采工艺, 2016, 38(6): 787–790. WU Zhiqiang, LIU Shujie, GENG Ya’nan, et al. Evaluation technology for isolation capacity of cement sheath in HTHP high-sulfur gas wells[J]. Oil Drilling & Production Technology, 2016, 38(6): 787–790.
[6] 王秀玲,任文亮,周战云,等. 储气库固井用油井水泥增韧材料的优选与应用[J]. 钻井液与完井液, 2017, 34(3): 89–93,98. WANG Xiuling, REN Wenliang, ZHOU Zhanyun, et al. Selection and application of toughening agent used in cementing gas storage well[J]. Drilling Fluid & Completion Fluid, 2017, 34(3): 89–93,98.
[7] 谭春勤,刘伟,丁士东,等. SFP弹韧性水泥浆体系在页岩气井中的应用[J]. 石油钻探技术, 2011, 39(3): 53–56. doi: 10.3969/j.issn.1001-0890.2011.03.009 TAN Chunqin, LIU Wei, DING Shidong, et al. Application of SFP elasto-toughness slurry in shale gas well[J]. Petroleum Drilling Techniques, 2011, 39(3): 53–56. doi: 10.3969/j.issn.1001-0890.2011.03.009
[8] 滕兆健,郭文猛,饶辰威,等. 低渗透油气藏水平井固井用增韧防窜剂的研发和应用[J]. 钻采工艺, 2019, 42(3): 101–103. doi: 10.3969/J.ISSN.1006-768X.2019.03.29 TENG Zhaojian, GUO Wenmeng, RAO Chenwei, et al. Development and application of anti-channeling agent for horizontal well cementing in low permeability oil and gas reservoirs[J]. Drilling & Production Technology, 2019, 42(3): 101–103. doi: 10.3969/J.ISSN.1006-768X.2019.03.29
[9] 严思明,严圣东,吴亚楠,等. 功能材料对固井水泥石力学性能的影响[J]. 石油钻采工艺, 2018, 40(2): 174–178. YAN Siming, YAN Shengdong, WU Yanan, et al. Effect of functional materials on mechanical properties of hardened cement paste[J]. Oil Drilling & Production Technology, 2018, 40(2): 174–178.
[10] 张聪,曹明莉,许玲. 混凝土多尺度特征与多尺度纤维增强理论研究进展[J]. 混凝土与水泥制品, 2014(3): 44–48. doi: 10.3969/j.issn.1000-4637.2014.03.013 ZHANG Cong, CAO Mingli, XU Ling. Research progress of multi-scale characteristic and multi-scale fiber reinforcing theory for concrete[J]. China Concrete and Cement Products, 2014(3): 44–48. doi: 10.3969/j.issn.1000-4637.2014.03.013
[11] 张聪,曹明莉. 多尺度纤维增强水泥基复合材料力学性能试验[J]. 复合材料学报, 2014, 31(3): 661–668. ZHANG Cong, CAO Mingli. Mechanical property test of multi-scale fiber reinforced cementitious composites[J]. Acta Materiae Compositae Sinica, 2014, 31(3): 661–668.
[12] PEREIRA E B, FISCHER G, BARROS J A O. Effect of hybrid fiber reinforcement on the cracking process in fiber reinforced cementitious composites[J]. Cement and Concrete Composites, 2012, 34(10): 1114–1123. doi: 10.1016/j.cemconcomp.2012.08.004
[13] 邹双, 邹建龙, 赵宝辉, 等.一种固井水泥浆用纤维增韧剂及其制备方法: CN201611089451.2[P].2017-05-17. ZOU Shuang, ZOU Jianlong, ZHAO Baohui, et al. A fiber toughening agent for oil well cement slurry and its preparation method: CN 201611089451.2 [P]. 2017-05-17.
[14] 李明,杨雨佳,郭小阳. 碳纤维增强油井水泥石的力学性能[J]. 复合材料学报, 2015, 32(3): 782–788. LI Ming, YANG Yujia, GUO Xiaoyang. Mechanical properties of carbon fiber reinforced oil well cement composites[J]. Acta Materiae Compositae Sinica, 2015, 32(3): 782–788.
[15] 穆海朋,步玉环,程荣超. 纤维水泥的发展及应用[J]. 石油钻探技术, 2005, 33(2): 36–36. MU Haipeng, BU Yuhuan, CHENG Rongchao. The development and application of fiber cement[J]. Petroleum Drilling Techniques, 2005, 33(2): 36–36.
[16] 程小伟,秦丹,赵殊勋,等. 动态冲击下纤维素固井水泥石力学性能及增韧机理研究[J]. 硅酸盐通报, 2019, 38(6): 1918–1922, 1928. CHENG Xiaowei, QIN Dan, ZHAO Shuxun, et al. Mechanical properties and toughening mechanism of cellulose cement under dynamic impact[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(6): 1918–1922, 1928.
[17] 华苏东,姚晓. 复合纤维提高油井水泥石韧性的研究[J]. 钻井液与完井液, 2007, 24(4): 40–42. doi: 10.3969/j.issn.1001-5620.2007.04.013 HUA Sudong, YAO Xiao. Composite fiber improves the toughness of oil-well set cement[J]. Drilling Fluid & Completion Fluid, 2007, 24(4): 40–42. doi: 10.3969/j.issn.1001-5620.2007.04.013
[18] 楼晨阳,姚晓,何德清,等. 钙质晶须在高温加砂水泥中的增强性能研究[J]. 石油钻探技术, 2015, 43(4): 91–95. LOU Chenyang, YAO Xiao, HE Deqing, et al. The reinforcing effect of calcium-based whisker in high-temperature sand-cement mixtures[J]. Petroleum Drilling Techniques, 2015, 43(4): 91–95.