Key Technologies for Slim Hole Drilling in the Southern Sulige Block
-
摘要: 针对苏里格南区块小井眼钻井存在的钻头选型困难、井眼轨迹控制难度大、电测遇阻频繁、井漏严重和钻井速度慢等技术难点,开展了PDC钻头优化、螺杆钻具改进、钻具组合优选、井眼轨迹控制、钻井液体系优选和井下故障防控等关键技术研究,形成了苏里格南区块小井眼钻井关键技术,并在80余口井进行了现场应用。应用结果表明:改进后的PDC钻头性能稳定,机械钻速高,6口井钻井周期在10 d以内;优选的钻具组合和螺杆钻具能实现了二开“两趟钻”的提速要求;采取调控钻井液密度、降低压耗和预加随钻堵漏材料等措施钻穿易漏层,防漏堵漏效果显著;优化钻井液性能,提高了电测一次成功率。苏里格南区块小井眼钻井关键技术为该区块小井眼安全高效钻井提供了技术支撑。Abstract: Technical difficulties have been encountered in slim hole drilling in the Southern Sulige Block. The difficulties include bit selection, well trajectory control, frequent sticking during electrical logging, severe lost circulation and low penetration rate, etc. Therefore, researches on key technologies such as PDC bit optimization, PDM tool improvement, BHA optimization, well trajectory control, optimal selection of drilling fluids systems, anti-leakage and plugging were carried out, and formed key technologies for slim hole drilling in the Southern Sulige Block, which were applied in more than 80 wells. Field applications suggest that the improved PDC bit has stable performance, with high penetration rate. Among them, the drilling cycle of 6 wells is less than 10 days; the optimized BHA and PDM tools can meet the requirement of “two-run drilling” in the second-spud section. By implementing the strategy of controlling the drilling fluid density, reducing the pressure loss and pre-adding plugging material while drilling the thief zone, etc., remarkable anti-leakage and plugging effects were achieved; Drilling fluid properties have been optimized to improve the success rate of one-time electrical logging. The key drilling technologies for slim holes in the Southern Sulige Block have provided technical support for safe and efficient slim hole drilling on this area.ea.
-
-
表 1 不同型号的螺杆钻具施工参数
Table 1 Construction parameters of different types of PDM tools
使用井段 型号 头数 级数 螺杆总长/m 使用井段/m 排量/(L·s–1) 转速/(r·min–1) 扭矩/(N·m) 压降/MPa 功率/kW 上部 5LZ127X7Y-IV 5︰6 5.0 7.42 720~2 300 16 197 3 012 4.0 52 中部 7LZ127X7Y-V 7︰8 3.8 7.66 2 300~3 000 16 120 4 018 3.0 46 下部 7LZ127X7Y-AD 7︰8 3.8 7.66 3 000~4 000 14 60 7 600 3.4 40 表 2 地层自然降斜规律统计结果
Table 2 Statistical results of the natural dip law of stratum
地层 造斜规律 降斜率/((°)·(30m)–1) 直罗组 降斜 0.49~0.74 延安组 降斜 0.49~1.96 延长组 降斜 0.40~3.00 纸坊组 降斜 0.28~0.80 和尚沟组 降斜 0.20~0.80 刘家沟组 降斜 0.23~1.59 石千峰组 降斜 0.20~1.19 石盒子组 降斜 0.22~1.50 山西组 降斜 0.10~0.50 太原组 降斜 0.10~0.50 本溪组 降斜 0.10~0.50 马家沟组 降斜 0.10~0.30 表 3 降排量后环空当量密度计算结果
Table 3 Calculation results of annular equivalent density after reducing the flowrate
易漏层 垂深/
m井深/
m钻井液密度/
(kg·L–1)排量/
(L·s–1)上返速度/
(m·s–1)环空压耗/
MPa对应当量密度/
(kg·L–1)当量密度差/
(kg·L–1)延长组中部 1 700 1 800 1.06 14 1.17 1.62 0.10 0.03 12 1.00 1.19 0.07 刘家沟组底部 2 980 3 220 1.08 14 1.17 2.96 0.10 0.03 12 1.00 2.17 0.07 -
[1] 王平双,邢希金,刘书杰,等. 小井眼钻井液性能研究[J]. 石油天然气学报,2013,35(11):101–104. doi: 10.3969/j.issn.1000-9752.2013.11.022 WANG Pingshuang, XING Xijin, LIU Shujie, et al. Study on the performance of drilling fluid for slim-hole drilling[J]. Journal of Oil and Gas Technology, 2013, 35(11): 101–104. doi: 10.3969/j.issn.1000-9752.2013.11.022
[2] 冉辉,宋健,杨克旺,等. 小井眼钻井技术研究及在苏东区块的应用[J]. 石油化工应用,2019,38(10):55–58, 103. doi: 10.3969/j.issn.1673-5285.2019.10.014 RAN Hui, SONG Jian, YANG Kewang, et al. Research and application of slim hole drilling technology in East Block of Sulige Gas Field[J]. Petrochemical Industry Application, 2019, 38(10): 55–58, 103. doi: 10.3969/j.issn.1673-5285.2019.10.014
[3] 尹敬军,杨敏. 苏里格气田小井眼定向井快速钻井技术[J]. 天然气与石油,2020,38(1):77–81. YIN Jingjun, YANG Min. Fast drilling technology for slim hole directional well in Sulige Gas Field[J]. Natural Gas and Oil, 2020, 38(1): 77–81.
[4] 王强,李文哲,王孟玉,等. 大深001-X1井小井眼钻井技术实践与建议[J]. 钻采工艺,2016,39(1):127–129. doi: 10.3969/J.ISSN.1006-768X.2016.01.38 WANG Qiang, LI Wenzhe, WANG Mengyu, et al. Drilling technology practice and suggestion of small hole in Well Dashen 001-X1[J]. Drilling & Production Technology, 2016, 39(1): 127–129. doi: 10.3969/J.ISSN.1006-768X.2016.01.38
[5] 郁燕飞,郭亮,董易凡,等. 苏里格南小井眼钻头优选及改进设计[J]. 石油化工应用,2018,37(11):54–56, 70. YU Yanfei, GUO Liang, DONG Yifan, et al. Optimization and improvement design of slim hole bit in the South Block of Sulige Gas Field[J]. Petrochemical Industry Application, 2018, 37(11): 54–56, 70.
[6] 王建龙,徐旺,郭耀,等. 苏里格气田苏25区块水平井钻井关键技术[J]. 长江大学学报(自然科学版),2019,16(7):26–30, 44. WANG Jianlong, XU Wang, GUO Yao, et al. Key technology of horizontal well drilling in Block Su25 of Sulige Gas Field[J]. Journal of Yangtze University (Natural Science Edition), 2019, 16(7): 26–30, 44.
[7] 刘彪,潘丽娟,张俊,等. 顺北区块超深小井眼水平井优快钻井技术[J]. 石油钻探技术,2016,44(6):11–16. LIU Biao, PAN Lijuan, ZHANG Jun, et al. The optimized drilling techniques used in ultra-deep and slim-hole horizontal wells of the Shunbei Block[J]. Petroleum Drilling Techniques, 2016, 44(6): 11–16.
[8] 路宗羽,赵飞,雷鸣,等. 新疆玛湖油田砂砾岩致密油水平井钻井关键技术[J]. 石油钻探技术,2019,47(2):9–14. doi: 10.11911/syztjs.2019029 LU Zongyu, ZHAO Fei, LEI Ming, et al. Key technologies for drilling horizontal wells in glutenite tight oil reservoirs in the Mahu Oilfield of Xinjiang[J]. Petroleum Drilling Techniques, 2019, 47(2): 9–14. doi: 10.11911/syztjs.2019029
[9] 康鹏,李琰,戴永鹏,等. 哈拉哈塘ϕ104.8 mm小井眼超深定向井难点分析及改进方向[J]. 钻采工艺,2019,42(3):122–124. doi: 10.3969/J.ISSN.1006-768X.2019.03.36 KANG Peng, LI Yan, DAI Yongpeng, et al. Challenges of ultradeep directional drilling in 104.8 mm ultra-slim hole at Halahatang and improvements to be made[J]. Drilling & Production Technology, 2019, 42(3): 122–124. doi: 10.3969/J.ISSN.1006-768X.2019.03.36
[10] 樊继强,王委,陈小元,等. 苏北盆地小井眼侧钻井关键技术研究与应用[J]. 石油钻探技术,2019,47(5):22–27. FAN Jiqiang, WANG Wei, CHEN Xiaoyuan, et al. Research and application of key technologies for slim hole sidetracking wells in the Subei Basin[J]. Petroleum Drilling Techniques, 2019, 47(5): 22–27.
[11] 史配铭,肖春学,王建军. 苏里格南部气田大斜度井钻井技术[J]. 石油钻采工艺,2019,41(1):18–22. SHI Peiming, XIAO Chunxue, WANG Jianjun. Drilling technologies used for the highly deviated wells in Southern Sulige Gas-field[J]. Oil Drilling & Production Technology, 2019, 41(1): 18–22.
[12] 王信,张民立,庄伟,等. 高密度水基钻井液在小井眼水平井中的应用[J]. 钻井液与完井液,2019,36(1):65–69. doi: 10.3969/j.issn.1001-5620.2019.01.013 WANG Xin, ZHANG Minli, ZHUANG Wei, et al. Application of high density water base drilling fluid system in horizontal slim hole drilling[J]. Drilling Fluid & Completion Fluid, 2019, 36(1): 65–69. doi: 10.3969/j.issn.1001-5620.2019.01.013
[13] 柳耀泉,郁燕飞,李堆军,等. 苏里格气田苏南区块电测遇阻分析与对策[J]. 长江大学学报(自然科学版),2018,15(3):59–63. LIU Yaoquan, YU Yanfei, LI Duijun, et al. Analysis on electric logging stuck in the South Block of Sulige Gas Field and its countermeasure[J]. Journal of Yangtze University (Natural Science Edition), 2018, 15(3): 59–63.
-
期刊类型引用(17)
1. 王大勇,马红滨,李欣龙,熊超,史怀忠,黄中伟,赫文豪. 高压水射流辅助锥形PDC齿破碎花岗岩试验研究. 石油机械. 2024(07): 36-44 . 百度学术
2. 王鸿远. 锥形与常规PDC齿混合布齿破岩机理研究及钻头研制. 石化技术. 2024(08): 389-391 . 百度学术
3. 张文波,史怀忠,席传明,张楠,熊超,陈振良. 锥形PDC齿和常规PDC齿混合切削破岩试验研究. 石油机械. 2023(03): 33-39 . 百度学术
4. 鲍伟伟,赵国辉,徐杨. 大港页岩油水平井优快钻井技术. 中国石油和化工标准与质量. 2023(12): 159-161 . 百度学术
5. 傅新康,黄中伟,史怀忠,吴洪志,何森林,熊超,赫文豪. 锥形齿与平面齿切削碳酸盐岩特征对比分析. 石油机械. 2023(07): 59-67 . 百度学术
6. 熊超,黄中伟,王立超,史怀忠,赫文豪,陈振良,李根生. 锥形聚晶金刚石复合片齿破岩特征与机制研究. 岩土力学. 2023(08): 2432-2444 . 百度学术
7. 徐建飞,陈晖,邹德永,黄勇. 高造斜率定向CDE钻头设计与应用. 机械设计与制造工程. 2023(09): 117-120 . 百度学术
8. 李彦操. PDC钻头齿的破岩机理和性能测试方法研究现状. 金刚石与磨料磨具工程. 2023(05): 553-567 . 百度学术
9. 吴泽兵,席凯凯,赵海超,黄海,张文超,杨晨娟. 仿生PDC齿旋转破岩时的温度场和破岩特性模拟研究. 石油钻探技术. 2022(02): 71-77 . 本站查看
10. 刘伟吉,阳飞龙,祝效华,罗云旭,何灵. 异形PDC齿切削破岩提速机理研究. 中国机械工程. 2022(17): 2133-2141 . 百度学术
11. 胡思成,管志川,路保平,梁德阳,呼怀刚,闫炎,陶兴华. 锥形齿旋冲及扭冲的破岩过程与破岩效率分析. 石油钻探技术. 2021(03): 87-93 . 本站查看
12. 徐卫强,史怀忠,曹权,史杏杏,胡锡辉,熊超,陈晗. 锥形PDC齿破碎砾岩特性试验研究. 石油机械. 2021(09): 9-16 . 百度学术
13. 麻地辉,薛娟,李毅锐. 水力结构增强型PDC钻头应用分析. 西部探矿工程. 2019(12): 64-65+74 . 百度学术
14. 汪为涛. 非均质地层锥形辅助切削齿PDC钻头设计与试验. 石油钻探技术. 2018(02): 58-62 . 本站查看
15. 杨顺辉. 新型多重复合切削钻头的研制. 石油机械. 2016(10): 21-24 . 百度学术
16. 孙源秀,邹德永,郭玉龙,陈修平,易杨. 切削-犁削混合钻头设计及现场应用. 石油钻采工艺. 2016(01): 53-56 . 百度学术
17. 孙源秀,邹德永,徐城凯,郭玉龙. 锥形聚晶金刚石复合片钻头(PDC)齿与常规PDC齿破岩效果对比试验. 科学技术与工程. 2015(36): 159-162 . 百度学术
其他类型引用(15)