基于测录井资料的环西—彭阳地区延安组储层流体性质识别方法研究

张丛秀, 郝晋美, 刘治恒, 郭浩鹏

张丛秀, 郝晋美, 刘治恒, 郭浩鹏. 基于测录井资料的环西—彭阳地区延安组储层流体性质识别方法研究[J]. 石油钻探技术, 2020, 48(5): 111-119. DOI: 10.11911/syztjs.2020079
引用本文: 张丛秀, 郝晋美, 刘治恒, 郭浩鹏. 基于测录井资料的环西—彭阳地区延安组储层流体性质识别方法研究[J]. 石油钻探技术, 2020, 48(5): 111-119. DOI: 10.11911/syztjs.2020079
ZHANG Congxiu, HAO Jinmei, LIU Zhiheng, GUO Haopeng. A Study on the Logging-Based Identification Method for Reservoir Fluid Properties of the Yan’an Formation in the Huanxi–Pengyang[J]. Petroleum Drilling Techniques, 2020, 48(5): 111-119. DOI: 10.11911/syztjs.2020079
Citation: ZHANG Congxiu, HAO Jinmei, LIU Zhiheng, GUO Haopeng. A Study on the Logging-Based Identification Method for Reservoir Fluid Properties of the Yan’an Formation in the Huanxi–Pengyang[J]. Petroleum Drilling Techniques, 2020, 48(5): 111-119. DOI: 10.11911/syztjs.2020079

基于测录井资料的环西—彭阳地区延安组储层流体性质识别方法研究

基金项目: 国家科技重大专项“鄂尔多斯盆地大型低渗透岩性地层油气藏开发示范工程”(编号:2016ZX05050)资助
详细信息
    作者简介:

    张丛秀(1973—),女,陕西西安人,1996年毕业于石油大学(华东)矿场地球物理专业,高级工程师,主要从事测录井解释评价工作。E-mail:zangcx3_cq@petrochina.com.cn

  • 中图分类号: P631.8+4

A Study on the Logging-Based Identification Method for Reservoir Fluid Properties of the Yan’an Formation in the Huanxi–Pengyang

  • 摘要: 针对鄂尔多斯盆地环西—彭阳地区延安组储层流体性质识别困难的问题,从测井、录井常规解释难点入手,引入SPSS软件中的Fisher判别方法,利用大数据理念,对测录井资料进行了深度挖掘。从判识率与分离度2方面考虑,筛选出15项对储层流体性质敏感的参数,进行Fisher非标准化判别函数分类识别,流体识别准确率可达92.8%。选用2个贡献率较大的函数F1F2进行交会,建立了解释图版,图版返判率为89%。利用解释图版对环西—彭阳地区9口井10个储层进行了流体识别评价,符合率达80%,且未遗漏有价值的储层。应用结果表明,Fisher判别方法适用于类似油藏的储层流体性质识别,流体识别准确率高,具有推广价值。
    Abstract: In view of the difficulty in identifying the reservoir fluid properties of the Yan’an Formation in the Huanxi–Pengyang Area, beginning with the conventional interpretation difficulties of logging and mud logging, the Fisher discrimination method in SPSS software was introduced, with the concept of Big Data, the logging/mud logging parameters were deeply mined. Considering the recognition rate and separation degree, 15 parameters of reservoir fluid sensitivity were selected to identify the classification of Fisher non-standardized discriminant function, and the accuracy of fluid identification could reach 92.8%. Functions F1 and F2 were selected for their large contribution rate and intersected to plot the interpretation chart, and the identification rate of the chart was 89%. The interpretation chart was applied in the fluids interpretation and evaluation of 10 layers in 9 wells of Huanxi–Pengyang Area with a coincidence rate of 80%, and no valuable layers were missed. The application results showed that the Fisher discriminant method is suitable for high accurate identification of reservoir fluid properties in similar reservoirs, and it is worthy of wide adoption.
  • 图  1   地层水水型分布

    Figure  1.   Distribution of formation water types

    图  2   地层水Cl质量浓度与电阻率的关系

    Figure  2.   Relationship between mass concentration of chloride ion in formation water and resistivity

    图  3   电阻率与声波时差解释图版

    Figure  3.   Interpretation chart of resistivity and interval tran-sit time

    图  4   电阻率与补偿中子解释图版

    Figure  4.   Interpretation chart of resistivity and compensated neutron

    图  5   电阻率差异与储层流体性质的关系

    Figure  5.   Relationship between resistivity difference and reservoir fluid properties

    图  6   电阻率变化与储层流体性质的关系

    Figure  6.   Relationship between resistivity variation and reservoir fluid properties

    图  7   通过测井资料计算的含油饱和度与泥质含量解释图版

    Figure  7.   Interpretation chart of oil saturation and shale content calculated with logging data

    图  8   荧光直照色与储层流体性质的关系

    Figure  8.   Relationship between direct fluorescence color and reservoir fluid properties

    图  9   荧光系列对比级别与储层流体性质的关系

    Figure  9.   Relationship between fluorescence series contrast level and reservoir fluid properties

    图  10   荧光含油面积与储层流体性质的关系

    Figure  10.   Relationship between fluorescence oil-bearing area and reservoir fluid properties

    图  11   气测最大全烃含量与气测湿度比的图版

    Figure  11.   Chart of maximum total hydrocarbon content and gas logging humidity ratio

    图  12   气测峰基比与充注系数的图版

    Figure  12.   Chart of gas logging peak-to-base value and filling coefficient

    图  13   SPSS软件流体分类Fisher判别图

    Figure  13.   Fisher discrimination diagram of fluid classification by SPSS software

    图  14   Fisher判别方法流体性质解释图版

    Figure  14.   Interpretation chart of fluid properties by Fisher discriminant method

    图  15   环西—彭阳地区延安组综合解释验证图版

    Figure  15.   Comprehensive interpretation and verification chart of Yan’an Formation in Huanxi-Pengyang Area

    图  16   X42井延安组测井录井曲线

    Figure  16.   Logging curve of Yan’an formation of Well X42

    图  17   X20井延安组测井录井曲线

    Figure  17.   Logging curve of Yan’an formation of Well X20

    图  18   X42井和X20井综合解释图版

    Figure  18.   Comprehensive interpretation chart of Well X42 and Well X20

    表  1   不同类型储层流体分类函数系数及常量

    Table  1   Coefficient and constant of classification function for different types of reservoir fluids

    序号参数 判别函数的系数
    名称符号 F1F2F3
    1电阻率X1 –0.002 0.006 0.009
    2声波时差X2 0 –0.059 0.027
    3补偿中子X3 0.044 0.226–0.187
    4泥质含量X40.019–0.087–0.051
    5是否取心X5 0.364–0.144 1.023
    6最大全烃含量X6 –0.336 –0.666–0.754
    7平均全烃含量X7 0.501 1.231 1.538
    8湿度比X8 0.839 0.145–0.004
    9荧光直照色X9 –0.013 –0.083–0.050
    10含油面积X10 0.327–0.003–0.121
    11荧光系列对比级别X11 –0.110 0.634–0.134
    12充注系数X12 2.264–0.463–1.768
    13电阻率差异X13 0.336 1.277–0.419
    14电阻率变化X14 0.202–0.604 0.125
    15含油饱和度X15 0.055–0.088 0.028
    常量 –5.131 9.880–2.691
     注:判别函数F1F2F3等于各参数值与对应系数乘积之和再加上常量,如F1=–0.002X1+0.044X3+0.019X4+0.364X5–0.336X6+0.501X7+0.839X8–0.013X9+0.327X10–0.110X11+2.264X12+0.336X13+0.202X14+0.055X15–5.131。
    下载: 导出CSV

    表  2   Fisher分类及流体性质判别符合情况

    Table  2   Conformity of Fisher classification and fluid properties identification

    预测
    分类
    油层 油水同层 含油水层 水层
    层数占比,
    %
    层数占比,
    %
    层数占比,
    %
    层数占比,
    %
    油层17 80.95 00 00 1 1.92
    油水
    同层
    14.76 787.50 00 00
    含油
    水层
    14.76 00 2100 00
    水层29.53 112.50 00 51 98.08
    合计21100 8100 2100 52 100
     
    下载: 导出CSV

    表  3   Fisher判别函数特征值与方差贡献率

    Table  3   Eigenvalue and variance contribution rate of Fisher discriminant function

    函数特征值方差贡献率,%
    F11.18665.5
    F20.45225.0
    F30.171 9.5
     
    下载: 导出CSV

    表  4   环西—彭阳地区延安组综合解释图版验证结果

    Table  4   Verification results of comprehensive interpretation chart of Yan’an Formation in Huanxi-Pengyang area

    井号层位电阻率/
    (Ω·m)
    声波
    时差/
    (μm·s–1)
    补偿中
    子,%
    泥质含
    量,%
    气测全烃
    含量,%
    含油饱和度,%是否
    取心
    湿度
    荧光直
    照色
    含油面
    积,%
    系列对
    比级别
    充注
    系数
    电阻率
    差异
    电阻率
    变化
    F1F2试油
    结果
    解释
    结果
    符合
    情况
    最大平均
    X34延719.01 231.2818.6317.54 6.662.8554.230.4210~1510 0.9平稳 0.42–2.36油层油水同层
    X35延78.65241.9617.4912.00 0.560.4846.600.69黄白5~1090.3平稳–0.96–1.01水层水层
    X42延95.81234.3712.706.567.326.4845.540.528~1491.0降低 0.95 1.87水层含油水层
    A75延76.26246.8815.249.902.091.7139.280.16070.3平稳–1.95–1.85水层水层
    A75延106.63228.8711.8710.04 5.434.2931.530.3315~20100.3升高–1.02 1.08水层水层
    Y187延106.86231.2817.233.951.631.4948.730.595~1090.3升高–0.41–0.35水层水层
    B72延107.16244.9921.006.910.690.5329.370.31黄白1~270.3降低–2.49 0.81水层水层
    Y138延103.49243.6714.735.040.510.3726.380.44黄白2~370.7降低–1.61–0.51水层水层
    M191延106.42224.2712.903.320.820.5243.350.485~2010 0.5升高–0.54–0.51水层水层
    A54延319.79 251.7118.6318.72 0.130.1139.510.11黄白1~271.0升高 0.29–2.39油水同层油水同层
    下载: 导出CSV

    表  5   X42井与X20井参数对比

    Table  5   Comparison of parameters of Well H42 and Well H20

    井号电阻率/
    (Ω·m)
    声波时差/
    (μm·s–1
    补偿中
    子,%
    泥质含
    量,%
    含油饱
    和度,%
    最大全烃
    含量,%
    平均全烃
    含量,%
    湿度
    系列对
    比级别
    充注
    系数
    含油面
    积,%
    是否
    取心
    荧光直
    照色
    电阻率
    差异
    电阻率
    变化
    F1F2
    X425.81234.3712.70 6.5645.547.326.480.5291.05~10黄色降低0.631.88
    X205.74243.8413.3912.6050.468.096.720.5991.05~10暗黄色降低0.950.22
    下载: 导出CSV
  • [1] 赵彦德,刘显阳,张雪峰,等. 鄂尔多斯盆地天环坳陷南段侏罗系原油油源分析[J]. 现代地质, 2011, 25(1): 85–93. doi: 10.3969/j.issn.1000-8527.2011.01.011

    ZHAO Yande, LIU Xianyang, ZHANG Xuefeng, et al. Oil sources analysis of the Jurassic crude oil in the Southern Tianhuan Depression, Ordos Basin[J]. Geoscience, 2011, 25(1): 85–93. doi: 10.3969/j.issn.1000-8527.2011.01.011

    [2] 兰朝利,王建国,周晓峰,等. 鄂尔多斯盆地彭阳油田侏罗系延安组油藏成藏规律[J]. 油气地质与采收率, 2014, 21(5): 45–48. doi: 10.3969/j.issn.1009-9603.2014.05.010

    LAN Chaoli, WANG Jianguo, ZHOU Xiaofeng, et al. Hydrocarbon accumulation rules of sandstone reservoirs of Jurassic Yan’an Formation, Pengyang Oilfield of Ordos Basin[J]. Petroleum Geology and Recovery Efficiency, 2014, 21(5): 45–48. doi: 10.3969/j.issn.1009-9603.2014.05.010

    [3] 王怡.鄂尔多斯盆地演武西地区侏罗系延安组延9-延6成藏特征及主控因素分析[D].成都: 西南石油大学, 2017.

    WANG Yi. Analysis of reservoir characteristics and main controlling factors of Yan 9-Yan 6 oil group of Jurassic Yan’an Formation in the west of Yanwu Area, Ordos Basin[D].Chengdu: Southwest Petroleum University, 2017.

    [4] 郭正权,张立荣,楚美娟,等. 鄂尔多斯盆地南部前侏罗纪古地貌对延安组下部油藏的控制作用[J]. 古地理学报, 2008, 10(1): 63–71. doi: 10.7605/gdlxb.2008.01.007

    GUO Zhengquan, ZHANG Lirong, CHU Meijuan, et al. Pre-Jurassic palaeogeomorphic control on the hydrocarbon accumulation in the Lower Yan’an Formation in Southern Ordos Basin[J]. Journal of Palaeogeography, 2008, 10(1): 63–71. doi: 10.7605/gdlxb.2008.01.007

    [5] 叶博,梁晓伟,李卫成,等. 鄂尔多斯盆地陇东地区侏罗系油藏分布规律及成藏模式[J]. 新疆石油地质, 2014, 35(6): 659–663.

    YE Bo, LIANG Xiaowei, LI Weicheng, et al. Reservoir distribution and hydrocarbon accumulation pattern of Jurassic in Longdong Area of Ordos Basin[J]. Xinjiang Petroleum Geology, 2014, 35(6): 659–663.

    [6] 傅磊.鄂尔多斯盆地演武地区侏罗系延安组延7段沉积相及储层特征研究[D].荆州: 长江大学, 2017.

    FU Lei. The study on sedimentary facies and reservoir characeristics of Yan7 oil group of Jurassic Yan’an Formation in Yanwu Area, Ordos Basin[D]. Jingzhou: Yangtze University, 2017.

    [7] 张鑫.鄂尔多斯盆地演武西地区侏罗系沉积储层特征研究[D].成都: 成都理工大学, 2017.

    ZHANG Xin. Characteristics of Jurassic sedimentation and reservoirs in the west of Yanwu Area, Ordos Basin[D]. Chengdu: Chengdu University of Technology, 2017.

    [8] 吴新伟,张永平,张雁,等. 宁夏彭阳地区侏罗系油藏特征及有利区预测[J]. 石油化工应用, 2009, 28(3): 56–58. doi: 10.3969/j.issn.1673-5285.2009.03.017

    WU Xinwei, ZHANG Yongping, ZHANG Yan, et al. Reservoir characteristics and predicting for favorable areas of Jurassic in Pengyang Area of Ningxia[J]. Petrochemical Inoustry Application, 2009, 28(3): 56–58. doi: 10.3969/j.issn.1673-5285.2009.03.017

    [9] 叶博,梁晓伟,宋娟,等. 鄂尔多斯盆地演武地区侏罗系延安组油藏成藏特征[J]. 岩性油气藏, 2018, 30(4): 65–73.

    YE Bo, LIANG Xiaowei, SONG Juan, et al. Reservoir accumulation characteristics of Jurassic Yan’an Formationin Yanwu Area, Ordos Basin[J]. Lithologic Reservoirs, 2018, 30(4): 65–73.

    [10] 于雷, 陈建文,金文辉,等. 鄂尔多斯盆地彭阳油田侏罗系油气富集规律研究[J]. 岩性油气藏, 2013, 25(4): 33–37. doi: 10.3969/j.issn.1673-8926.2013.04.007

    YU Lei, CHEN Jianwen, JIN Wenhui, et al. Oil and gas enrichment law of Jurassic in Pengyang Oilfield, Ordos Basin[J]. Lithologic Reservoirs, 2013, 25(4): 33–37. doi: 10.3969/j.issn.1673-8926.2013.04.007

    [11] 仝立华,郝国丽,罗晓玲,等. 鄂尔多斯盆地南部侏罗系油砂的发现与成藏模式[J]. 世界地质, 2018, 37(2): 539–547. doi: 10.3969/j.issn.1004-5589.2018.02.020

    TONG Lihua, HAO Guoli, LUO Xiaoling, et al. Discovery of Jurassic oil sand in southern Ordos Basin and its accumulation model[J]. Global Geology, 2018, 37(2): 539–547. doi: 10.3969/j.issn.1004-5589.2018.02.020

    [12] 白诗筠.鄂尔多斯盆地彭阳地区延9储层油藏油气富集规律研究[D].西安: 西安石油大学, 2013.

    BAI Shiyun. Research on favorable area prediction and hydrocarbon enrichment patterns of the Yan 9 reservoir in Pengyang Area, Ordos Basin[D]. Xi’an: Xi’an Shiyou University, 2013.

    [13] 于雷,陈建文,金绍臣,等. 鄂尔多斯盆地彭阳地区延安组、长3油层组储层特征及评价[J]. 岩性油气藏, 2012, 24(6): 49–53. doi: 10.3969/j.issn.1673-8926.2012.06.011

    YU Lei, CHEN Jianwen, JIN Shaochen, et al. Reservoir characteristics and evaluation of Yan’an Formation and Chang 3 oil reservoir set in Pengyang Area, Ordos Basin[J]. Lithologic Reservoirs, 2012, 24(6): 49–53. doi: 10.3969/j.issn.1673-8926.2012.06.011

    [14] 高畅.鄂尔多斯盆地环县地区侏罗系延9油层组沉积相及储层特征[D].成都: 成都理工大学, 2018.

    GAO Chang. Sedimentary facies and reservoir characteristics of Jurassic Yan 9 reservoir group in Huanxian Area, Ordos Basin[D]. Chengdu: Chengdu University of Technology, 2018.

    [15] 杜鹏. 鄂尔多斯盆地延安组录井解释评价方法研究[J]. 录井工程, 2019, 30(2): 68–73. doi: 10.3969/j.issn.1672-9803.2019.02.013

    DU Peng. Study on mud logging interpretation and evaluation method of Yan’an Formation in Ordos Basin[J]. Mud Logging Engineering, 2019, 30(2): 68–73. doi: 10.3969/j.issn.1672-9803.2019.02.013

    [16] 柴童.彭阳地区延安组低幅度构造特征与油气成藏关系研究[D].西安: 西安石油大学, 2018.

    CHAI Tong. Research on characteristic of low amplitude structures and it´s relationship with hydrocarbon accumulation of Yan’an Formation in Pengyang Area[D]. Xi’an: Xi’an Shiyou University, 2018.

    [17] 蒋钧,梁涛,刘晓龙,等. 彭阳侏罗系储层测井特征研究[J]. 石油化工应用, 2016, 35(10): 115–116, 129. doi: 10.3969/j.issn.1673-5285.2016.10.026

    JIANG Jun, LIANG Tao, LIU Xiaolong, et al. Study on logging characteristics of Jurassic reservoirs in Pengyang[J]. Petrochemical Industry Application, 2016, 35(10): 115–116, 129. doi: 10.3969/j.issn.1673-5285.2016.10.026

    [18] 郭正权,潘令红,刘显阳,等. 鄂尔多斯盆地侏罗系古地貌油田的形成条件与分布规律[J]. 中国石油勘探, 2001, 6(4): 20–27.

    GUO Zhengquan, PAN Linghong, LIU Xianyang, et al. Formation conditions and distribution of Jurassic paleogeomorphic oilfield in Ordos Basin[J]. China Petroleum Exploration, 2001, 6(4): 20–27.

    [19] 文江波,张劲军,郑飞,等. 流动条件下原油乳化含水率与水相组成的关系[J]. 石油学报, 2015, 36(5): 626–632. doi: 10.7623/syxb201505013

    WEN Jiangbo, ZHANG Jingjun, ZHENG Fei, et al. Relationship between emulsified water fraction under flowing conditions and composition of water phase[J]. Acta Petrolei Sinica, 2015, 36(5): 626–632. doi: 10.7623/syxb201505013

    [20] 刘联群,刘建平,李勇,等. 鄂尔多斯盆地彭阳地区侏罗系延安组油气成藏主控因素分析[J]. 地球科学与环境学报, 2010, 32(3): 263–267. doi: 10.3969/j.issn.1672-6561.2010.03.008

    LIU Lianqun, LIU Jianping, LI Yong, et al. Main factors influencing oil reservoir in Jurassic Yan’an Formation in Pengyang Area, Ordos Basin[J]. Journal of Earth Sciences and Environment, 2010, 32(3): 263–267. doi: 10.3969/j.issn.1672-6561.2010.03.008

    [21] 刘杰,张涛,王建,等. Fisher判别分析法在核磁共振录井油水层识别中的应用[J]. 录井工程, 2014, 25(1): 25–29.

    LIU Jie, ZHANG Tao, WANG Jian, et al. Application of Fisher discriminant and analysis method to identifying oil and water layers in NMR logging[J]. Mud Logging Engineering, 2014, 25(1): 25–29.

    [22] 张家政,关泉生,谈继强,等. Fisher判别在红山嘴油田火山岩岩性识别中的应用[J]. 新疆石油地质, 2008, 29(6): 761–764.

    ZHANG Jiazheng, GUAN Quansheng, TAN Jiqiang, et al. Application of Fisher discrimination to volcanic lithologic identification: an example from Hongshanzui Oilfield, Junggar Basin[J]. Xinjiang Petroleum Geology, 2008, 29(6): 761–764.

    [23] 姬建飞, 袁胜斌, 倪朋勃, 等. 核Fisher判别分析方法在黄河口凹陷储集层流体解释评价中的应用[J]. 录井工程, 2019, 30(1): 65–68. doi: 10.3969/j.issn.1672-9803.2019.01.012

    JI Jianfei, YUAN Shengbin, NI Pengbo, et al. Application of kernel Fisher discriminant analysis method in fluid interpretation and evaluation of reservoirs in Huanghekou Sag[J]. Mud Logging Engineering, 2019, 30(1): 65–68. doi: 10.3969/j.issn.1672-9803.2019.01.012

  • 期刊类型引用(6)

    1. 陈琪,李伟,季磊磊,路德乐,潘云欣. 非对称脉冲装置内部流动及能量损失特性. 排灌机械工程学报. 2023(09): 926-932 . 百度学术
    2. 严忠,陈小元,王委,纪照生,史杏杏. 脉冲射流动力机构的结构设计和数值模拟. 石油机械. 2021(03): 15-24 . 百度学术
    3. 樊继强. 井底交变流场提速工具的研制及特性测试. 石油机械. 2020(06): 37-42 . 百度学术
    4. 牛利宁,郑锡坤. 浅析石油钻井工具发展与应用分析. 信息记录材料. 2018(10): 246-247 . 百度学术
    5. 刘晗. 石油钻井工具的检测与应用. 科学技术创新. 2018(33): 162-163 . 百度学术
    6. 梁奇敏,何俊才,张弘,张翼,刘新云. 钻井提速工具经济性预测评价方法. 石油钻探技术. 2017(03): 57-61 . 本站查看

    其他类型引用(4)

图(18)  /  表(5)
计量
  • 文章访问数:  1161
  • HTML全文浏览量:  334
  • PDF下载量:  80
  • 被引次数: 10
出版历程
  • 收稿日期:  2019-12-01
  • 修回日期:  2020-06-17
  • 网络出版日期:  2020-07-05
  • 刊出日期:  2020-09-24

目录

    /

    返回文章
    返回