不同注气介质驱替致密油藏微观孔隙动用特征研究

李二党, 韩作为, 高祥瑞, 马明宇, 邱钧超

李二党, 韩作为, 高祥瑞, 马明宇, 邱钧超. 不同注气介质驱替致密油藏微观孔隙动用特征研究[J]. 石油钻探技术, 2020, 48(5): 85-91. DOI: 10.11911/syztjs.2020078
引用本文: 李二党, 韩作为, 高祥瑞, 马明宇, 邱钧超. 不同注气介质驱替致密油藏微观孔隙动用特征研究[J]. 石油钻探技术, 2020, 48(5): 85-91. DOI: 10.11911/syztjs.2020078
LI Erdang, HAN Zuowei, GAO Xiangrui, MA Mingyu, QIU Junchao. Research on the Microscopic Pore Producing Characteristics of Tight Reservoirs Displaced by Different Gas Injection Media[J]. Petroleum Drilling Techniques, 2020, 48(5): 85-91. DOI: 10.11911/syztjs.2020078
Citation: LI Erdang, HAN Zuowei, GAO Xiangrui, MA Mingyu, QIU Junchao. Research on the Microscopic Pore Producing Characteristics of Tight Reservoirs Displaced by Different Gas Injection Media[J]. Petroleum Drilling Techniques, 2020, 48(5): 85-91. DOI: 10.11911/syztjs.2020078

不同注气介质驱替致密油藏微观孔隙动用特征研究

基金项目: 国家科技重大专项“鄂尔多斯盆地大型低渗透岩性地层油气藏开发示范工程”(编号:2016ZX05050)资助
详细信息
    作者简介:

    李二党(1981—),男,陕西周至人,2006年毕业于中国石油大学(华东)资源勘查工程专业,工程师,主要从事油田开发方面的研究工作。E-mail:lierd2010@163.com

  • 中图分类号: TE357.2

Research on the Microscopic Pore Producing Characteristics of Tight Reservoirs Displaced by Different Gas Injection Media

  • 摘要: 为了明确不同注气介质对致密油藏的微观驱油机理,基于核磁共振T2谱测试原理,开展了注N2/CO2岩心驱替试验,从微观孔隙尺度研究了注N2非混相驱和注CO2混相驱的微观驱油机理,评价了驱替过程中不同孔径孔隙原油的动用程度。试验结果显示,N2非混相驱和CO2混相驱的最终采出程度相差很小;N2驱替过程可划分为未突破期、突破初期和突破中后期3个阶段,小孔隙中的原油动用程度高于大孔隙;CO2混相驱时大孔隙中原油的动用程度大幅增加,小孔隙中的原油动用程度相对较低。岩心微观孔隙结构分布是造成N2/CO2驱替过程中大、小孔隙中原油动用程度存在差异的主要原因。研究结果表明,与CO2驱相比,致密油藏N2驱的开发效果更好,这为安塞油田采用注N2驱开发长6储层提供了理论依据。
    Abstract: In order to provide clarity in the microscopic oil displacement mechanisms of tight reservoirs displaced by different gas injection media, core displacement experiments of N2 and CO2 injection were carried out respectively based on the principle of NMR T2 spectrum test. The microscopic displacement mechanisms of N2 immiscible flooding and CO2 miscible flooding were studied at the microscopic pore scale, and the oil production from pores with different pore sizes during displacement was evaluated. The results show that final recovery percent from N2 immiscible flooding and CO2 miscible flooding has little difference. The N2 flooding process can be divided into three stages: the non-breakthrough stage, the early breakthrough stage and the mid-late breakthrough stage. The recovery percent from small pores is higher than that from large pores. However, the oil recovery percent from large pores is greatly improved in CO2 miscible flooding, while it is relatively low from small pores. The distribution of microscopic pore structure is the main cause for the difference in recovery percent between large and small pores in the process of N2 and CO2 flooding. The results show that the development effect of N2 flooding in tight reservoirs is better than that of CO2 flooding, which provides a theoretical basis for the development of Chang 6 reservoir by N2 flooding in Ansai Oilfield .
  • 图  1   在线核磁共振岩心驱替试验装置

    Figure  1.   On-line NMR core displacement experimental device

    图  2   1#岩心N2非混相驱过程中的T2谱分布和含油饱和度沿程分布

    Figure  2.   Distribution of T2 spectrum and oil saturation along the core during N2 immiscible flooding of core sample 1#

    图  3   N2非混相驱过程中原油采出程度随时间的变化规律

    Figure  3.   Variation of oil recovery percent with time during N2 immiscible flooding

    图  4   2#岩心N2非混相驱过程中不同时间下T2谱分布和沿程含油饱和度分布

    Figure  4.   Distribution of T2 spectrum and oil saturation along the core at different time during N2 immiscible flooding of core sample 2#

    图  5   CO2混相驱过程中原油采出程度随时间的变化规律

    Figure  5.   Variation of oil recovery with time during CO2 miscible flooding

    图  6   N2驱和CO2驱后不同孔径孔隙中原油采出程度对比

    Figure  6.   Comparison of oil recovery percent from pores in different size after CO2 flooding and N2 flooding

    表  1   试验岩心的基本参数

    Table  1   Basic parameters of experimental core

    岩心编号长度/mm直径/mm孔隙度,%气测渗透率/mD最大进汞饱和度,%中值孔喉半径/μm驱替介质
    1#50. 2125.0011.780.71284.780.117 2N2
    2#50. 0325.0313.420.66883.390.136 4CO2
    下载: 导出CSV
  • [1] 邹才能,朱如凯,吴松涛,等. 常规与非常规油气聚集类型、特征、机理及展望: 以中国致密油和致密气为例[J]. 石油学报, 2012, 33(2): 173–187. doi: 10.7623/syxb201202001

    ZOU Caineng, ZHU Rukai, WU Songtao, et al. Types, characteristics, genesis and prospects of conventional and unconventional hydrocarbon accumulation: taking tight oil and tight gas in China as an instance[J]. Acta Petrolei Sinica, 2012, 33(2): 173–187. doi: 10.7623/syxb201202001

    [2] 杨华,李士祥,刘显阳. 鄂尔多斯盆地致密油、页岩油特征及资源潜力[J]. 石油学报, 2013, 34(1): 1–11. doi: 10.7623/syxb201301001

    YANG Hua, LI Shixiang, LIU Xianyang. Characteristics and resource prospects of tight oil and shale oil in Ordos Basin[J]. Acta Petrolei Sinica, 2013, 34(1): 1–11. doi: 10.7623/syxb201301001

    [3] 唐人选,梁珀,吴公益,等. 苏北复杂断块油藏二氧化碳驱油效果影响因素分析及认识[J]. 石油钻探技术, 2020, 48(1): 98–103. doi: 10.11911/syztjs.2019125

    TANG Renxuan, LIANG Po, WU Gongyi, et al. Analyzing and understanding the influencing factors of CO2 flooding in the Subei complex fault block reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(1): 98–103. doi: 10.11911/syztjs.2019125

    [4] 李忠兴,屈雪峰,刘万涛,等. 鄂尔多斯盆地长7段致密油合理开发方式探讨[J]. 石油勘探与开发, 2015, 42(2): 217–225. doi: 10.11698/PED.2015.02.11

    LI Zhongxing, QU Xuefeng, LIU Wantao, et al. Development modes of Triassic Yanchang Formation Chang 7 Member tight oil in Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(2): 217–225. doi: 10.11698/PED.2015.02.11

    [5]

    WEI Bing, LU Laiming, PU Wanfen, et al. Production dynamics of CO2 cyclic injection and CO2 sequestration in tight porous media of Lucaogou Formation in Jimsar Sag[J]. Journal of Petroleum Science and Engineer, 2017, 157: 1084–1094. doi: 10.1016/j.petrol.2017.08.023

    [6]

    QIAN Kun, YANG Shenglai, DOU Hongen, et al. Experimental investigation on microscopic residual oil distribution during CO2 huff-and-puff process in tight oil reservoirs[J]. Energies, 2018, 11(10): 2843. doi: 10.3390/en11102843

    [7] 张戈,王梦涵,焦红岩,等. 断块油藏氮气吞吐筛选标准[J]. 断块油气田, 2019, 26(6): 766–770.

    ZHANG Ge, WANG Menghan, JIAO Hongyan, et al. Criteria for nitrogen stimulation selection of fault block reservoir[J]. Fault-Block Oil & Gas Field, 2019, 26(6): 766–770.

    [8] 马铨峥,杨胜来,陈浩,等. 致密油储集层CO2吞吐效果及影响因素分析: 以新疆吉木萨尔凹陷芦草沟组为例[J]. 石油科学通报, 2018, 3(4): 434–445.

    MA Quanzheng, YANG Shenglai, CHEN Hao, et al. Effect and influencing factors of CO2 huff and puff in a tight oil reservoir: taking the Lucaogou Formation in the Xinjiang Jimsar Sag as an exam-ple[J]. Petroleum Science Bulletin, 2018, 3(4): 434–445.

    [9] 刘中云,赵海洋,王建海,等. 塔河油田溶洞型碳酸盐岩油藏注入氮气垂向分异速度及横向波及范围研究[J]. 石油钻探技术, 2019, 47(4): 75–82. doi: 10.11911/syztjs.2019092

    LIU Zhongyun, ZHAO Haiyang, WANG Jianhai, et al. Study on vertical different velocity and transverse scope of nitrogen injection in carbonate reservoirs with fractures and vugs in the Tahe Oil-field[J]. Petroleum Drilling Techniques, 2019, 47(4): 75–82. doi: 10.11911/syztjs.2019092

    [10] 邓瑞健,田巍,李中超,等. 二氧化碳驱动用储层微观界限研究[J]. 特种油气藏, 2019, 26(3): 133–137. doi: 10.3969/j.issn.1006-6535.2019.03.025

    DENG Ruijian, TIAN Wei, LI Zhongchao, et al. Microscopic limits of reservoir producing for carbon dioxide flooding[J]. Special Oil & Gas Reservoirs, 2019, 26(3): 133–137. doi: 10.3969/j.issn.1006-6535.2019.03.025

    [11] 胡伟,吕成远,王锐,等. 水驱转CO2混相驱渗流机理及传质特征[J]. 石油学报, 2018, 39(2): 201–207. doi: 10.7623/syxb201802008

    HU Wei, LYU Chengyuan, WANG Rui, et al. Porous flow mechanism and mass transfer characteristics of CO2 miscible flooding after water flooding[J]. Acta Petrolei Sinica, 2018, 39(2): 201–207. doi: 10.7623/syxb201802008

    [12] 杨胜来,杭达震,孙蓉,等. CO2对原油的抽提及其对原油黏度的影响[J]. 中国石油大学学报(自然科学版), 2009, 33(4): 85–88.

    YANG Shenglai, HANG Dazhen, SUN Rong, et al. CO2 extraction for crude oil and its effect on crude oil viscosity[J]. Journal of China University of Petroleum(Edition of Natural Science), 2009, 33(4): 85–88.

    [13] 陈兴隆,秦积舜,张可. CO2与原油混相及非混相条件下渗流机理差异[J]. 特种油气藏, 2009, 16(3): 77–81. doi: 10.3969/j.issn.1006-6535.2009.03.023

    CHEN Xinglong, QIN Jishun, ZHANG Ke. Difference of flowing mechanism in miscible and immiscible phase of CO2 and crude oil[J]. Special Oil & Gas Reservoirs, 2009, 16(3): 77–81. doi: 10.3969/j.issn.1006-6535.2009.03.023

    [14]

    PAPADIMITRIOU N I, ROMANOS G E, CHARALAMBOPOU-LOU G C, et al. Experimental investigation of asphaltene deposition mechanism during oil flow in core samples[J]. Journal of Petroleum Science and Engineering, 2007, 57(3/4): 281–293.

    [15]

    WANG Xiaoqi, GU Yongan. Oil recovery and permeability reduction of a tight sandstone reservoir in immiscible and miscible CO2 flooding process[J]. Industrial & Engineering Chemistry Research, 2011, 50(4): 2388–2399.

    [16] 郎东江,伦增珉,王海涛,等. 致密砂岩储层CO2驱油特征的核磁共振试验研究[J]. CT理论与应用研究, 2016, 25(2): 141–147.

    LANG Dongjiang, LUN Zengmin, WANG Haitao, et al. Study of displacement characteristics of CO2 in tight sandstone reservoir by nuclear magnetic resonance[J]. CT Theory and Application, 2016, 25(2): 141–147.

    [17] 代全齐,罗群,张晨,等. 基于核磁共振新参数的致密油砂岩储层孔隙结构特征: 以鄂尔多斯盆地延长组7段为例[J]. 石油学报, 2016, 37(7): 887–897. doi: 10.7623/syxb201607007

    DAI Quanqi, LUO Qun, ZHANG Chen, et al. Pore structure characteristics of tight-oil sandstone reservoir based on a new parameter measured by NMR experiment: a case study of seventh member in Yanchang Formation, Ordos Basin[J]. Acta Petrolei Sinica, 2016, 37(7): 887–897. doi: 10.7623/syxb201607007

    [18]

    WEI Bing, ZHANG Xiang, WU Runnan, et al. Pore-scale monitoring of CO2 and N2 flooding processes in a tight formation under reservoir conditions using nuclear magnetic resonance (NMR): a case study[J]. Fuel, 2019, 246: 34–41. doi: 10.1016/j.fuel.2019.02.103

    [19] 蒲万芬,王崇阳,李一波,等. 致密油储层CO2驱核磁共振试验研究[J]. 科学技术与工程, 2017, 17(7): 30–35. doi: 10.3969/j.issn.1671-1815.2017.07.005

    PU Wanfen, WANG Chongyang, LI Yibo, et al. Nuclear magnetic resonance experimental study of CO2 flooding in tight reservoir[J]. Science Technology and Engineering, 2017, 17(7): 30–35. doi: 10.3969/j.issn.1671-1815.2017.07.005

    [20] 秦积舜,张可,陈兴隆. 高含水后CO2驱油机理的探讨[J]. 石油学报, 2010, 31(5): 797–800. doi: 10.7623/syxb201005016

    QIN Jishun, ZHANG Ke, CHEN Xinglong. Mechanism of the CO2 flooding as reservoirs containing high water[J]. Acta Petrolei Sinica, 2010, 31(5): 797–800. doi: 10.7623/syxb201005016

  • 期刊类型引用(3)

    1. 杨开吉,张颖,魏强,程艳,刘全刚. 海上油田开发用抗温抗盐乳液聚合物研制与性能评价. 石油钻探技术. 2024(04): 118-127 . 本站查看
    2. 李硕轩,赵东睿,高红茜,刘誉. 超高分子聚合物驱提高高盐稠油油藏采收率机理及现场应用. 钻采工艺. 2023(01): 132-139 . 百度学术
    3. 白佳佳,顾添帅,司双虎,陶磊,张娜,史文洋,朱庆杰. 高盐稠油油藏聚合物驱提高采收率研究. 常州大学学报(自然科学版). 2023(05): 60-66 . 百度学术

    其他类型引用(3)

图(6)  /  表(1)
计量
  • 文章访问数:  892
  • HTML全文浏览量:  496
  • PDF下载量:  53
  • 被引次数: 6
出版历程
  • 收稿日期:  2019-11-26
  • 修回日期:  2020-06-11
  • 网络出版日期:  2020-07-01
  • 刊出日期:  2020-09-24

目录

    /

    返回文章
    返回