满深1井奥陶系桑塔木组高性能防塌水基钻井液技术

于得水, 徐泓, 吴修振, 陈迎伟, 徐金永

于得水, 徐泓, 吴修振, 陈迎伟, 徐金永. 满深1井奥陶系桑塔木组高性能防塌水基钻井液技术[J]. 石油钻探技术, 2020, 48(5): 49-54. DOI: 10.11911/syztjs.2020070
引用本文: 于得水, 徐泓, 吴修振, 陈迎伟, 徐金永. 满深1井奥陶系桑塔木组高性能防塌水基钻井液技术[J]. 石油钻探技术, 2020, 48(5): 49-54. DOI: 10.11911/syztjs.2020070
YU Deshui, XU Hong, WU Xiuzhen, CHEN Yingwei, XU Jinyong. High Performance Anti-Sloughing Water Based Drilling Fluid Technology for Well Manshen 1 in the Ordovician Sangtamu Formation[J]. Petroleum Drilling Techniques, 2020, 48(5): 49-54. DOI: 10.11911/syztjs.2020070
Citation: YU Deshui, XU Hong, WU Xiuzhen, CHEN Yingwei, XU Jinyong. High Performance Anti-Sloughing Water Based Drilling Fluid Technology for Well Manshen 1 in the Ordovician Sangtamu Formation[J]. Petroleum Drilling Techniques, 2020, 48(5): 49-54. DOI: 10.11911/syztjs.2020070

满深1井奥陶系桑塔木组高性能防塌水基钻井液技术

详细信息
    作者简介:

    于得水(1973—),男,山东临朐人,1995年毕业于江汉石油学院应用化学专业,工程师,主要从事现场钻井液技术工作。E-mail:840296203@qq.com

  • 中图分类号: TE254

High Performance Anti-Sloughing Water Based Drilling Fluid Technology for Well Manshen 1 in the Ordovician Sangtamu Formation

  • 摘要: 满深1断裂带奥陶系桑塔木组为泥岩、泥灰岩地层,裂缝发育,井壁坍塌风险极高,给安全钻井带来了极大挑战。满深1井钻进至井深7 392.54 m(桑塔木组)时钻遇走滑断裂带,发生坍塌卡钻,处理难度大,最终选择回填侧钻。为此,分析了桑塔木组地层特点,研究应用了高性能防塌水基钻井液技术:选择合理的钻井液密度,强化对井壁的力学支撑,并采用复合降滤失措施降低水敏性泥岩地层的水化;在引入多氨基井壁抑制剂的同时,提高K+质量浓度,实现多元抑制防塌;提高钻井液的抗温能力、润滑性能及封堵性能,以满足桑塔木组对抑制、封堵防塌及抗高温稳定性的要求。现场应用表明,该井侧钻过程中钻井液性能稳定,K+质量浓度保持在35 000 mg/L左右,150 ℃温度下的高压滤失量由11.3 mL降至8.0 mL,桑塔木组钻进过程中未发生井眼失稳情况,顺利钻至三开中完井深,套管一次下到设计位置。这表明,高性能防塌水基钻井液防塌效果显著,达到了预期目标。
    Abstract: The lithology of Ordovician Sangtamu Formation in Manshen 1 fault zone is composed of mudstone and marl with well developed fractures and high risk of wellbore collapse, which brings great challenges to safe drilling. When Well Manshen 1 was drilled to the depth of 7 392.54 m (Sangtamu Formation), a strike slip fault zone was encountered, resulting in well collapse and sticking of drill tools, which was difficult to deal with. Backfill sidetracking was thus implemented. To solve this, the formation characteristics of Sangtamu Formation were analyzed, and the high-performance anti-sloughing water based drilling fluid technology was developed. Reasonable drilling fluid density was selected to mechanically support the borehole wall, compound fluid loss control measures were adopted to reduce the damage caused by filtrate on the water sensitive mudstone formation, and multi-amino borehole wall inhibitors was introduced while increasing K+ content to achieve a multiple anti-sloughing effect. At the same time, the temperature resistance, lubrication property and plugging performance of drilling fluid were improved to meet the requirements of inhibition, plugging, anti-sloughing and high temperature stability of the Sangtamu Formation. The application in the sidetracked borehole of the Well Manshen 1 showed that the drilling fluid performance was stable during sidetracking, the K+ content was maintained to be at around 35 000 mg/L, and the high temperature and high pressure filtration rate was reduced from 11.3 mL to 8.0 mL at 150℃. During the whole construction, no borehole instability occurred in the Sangtamu Formation. The well was successfully drilled to the total depth of the third spud, and the casing was set in place in one run. This showed that the anti-sloughing effect of high performance water based drilling fluid was remarkable, and it achieved the expected goal.
  • 表  1   磺化树脂材料对钻井液滤失性能的影响试验结果

    Table  1   The influence of sulfonated resin on the filtration property of drilling fluid

    配方塑性黏度/
    (mPa∙s)
    动切力/
    Pa
    静切力/PaAPI滤失
    量/mL
    高温高压滤
    失量1)/mL
    初切终切
    1#225.01.57.03.29.7
    2#235.51.57.52.08.2
     注:1)在温度150 ℃条件下测得。
    下载: 导出CSV

    表  2   KCl对钻井液流性的影响试验结果

    Table  2   The influence of KCl on rheology of drilling fluid

    试验条件配方塑性黏度/
    (mPa∙s)
    动切力/Pa静切力/PaAPI滤失量/
    mL
    高温高压滤失量1)/
    mL
    K+质量浓度/
    (mg·L–1
    初切终切
    常温2#297.52.010.01.47.624 000
    3#276.02.08.01.68.035 000
    150 ℃下老化24 h2#287.02.08.01.27.224 000
    3#246.01.57.01.57.835 000
    150 ℃下老化48 h2#328.52.011.0 1.67.824 000
    3#285.02.08.51.68.035 000
    150 ℃下老化72 h2#4011.0 3.012.0 2.29.224 000
    3#305.52.07.51.89.635 000
     注:1)在温度150 ℃条件下测得。
    下载: 导出CSV

    表  3   多氨基井壁稳定剂对钻井液稳定性的影响试验结果

    Table  3   The influence of multi-amino borehole wall stabilizer on drilling fluid stability

    配方塑性黏度/(mPa∙s)动切力/Pa静切力/PaAPI滤失量/mL高温高压滤失量1)/mL开罐情况
    初切终切
    3#2862.09.01.68.2上部有少许清液
    4#2762.08.01.68.2上下均匀
    5#2551.58.01.78.0上下均匀
     注:1)在温度150 ℃条件下测得。
    下载: 导出CSV

    表  4   沥青防塌剂对钻井液防塌性能的影响试验结果

    Table  4   The influence of asphalt anti-sloughing agent on anti-sloughing performance of drilling fluid

    配方塑性黏度/(mPa∙s)动切力/Pa静切力/PaAPI滤失量/mL高温高压滤失量1)/mL
    初切终切
    4#286.52.0 8.01.68.2
    6#357.52.510.01.47.6
    7#439.03.012.01.27.2
     注:1)在温度150 ℃条件下测得。
    下载: 导出CSV

    表  5   满深1井桑塔木组灰色泥岩岩屑回收率试验结果

    Table  5   The recovery ratio of grey mudstone of the Well Manshen 1 in the Sangtamu Formation

    试验编号试验介质岩屑回收率,%
    1清水 5.7
    2钾基聚磺防塌钻井液56.8
    3高性能防塌水基钻井液83.6
    下载: 导出CSV

    表  6   满深1井三开原井眼与侧钻井眼钻井情况对比

    Table  6   Comparison on drilling conditions between the original third spud borehole and the sidetracked borehole in the Well Manshen 1

    井眼钻进井段/m井段长度/m钻进时间/d井下情况
    原井眼7 175.00~7 392.54217.54 7.42正常
    7 392.54~7 480.57 88.0313.50反复划眼、倒划眼,掉块严重,扭矩异常,断钻具
    侧钻井眼7 166.00~7 480.57314.5710.21正常,井眼通畅
    下载: 导出CSV
  • [1] 金军斌. 塔里木盆地顺北区块超深井火成岩钻井液技术[J]. 石油钻探技术, 2016, 44(6): 17–23.

    JIN Junbin. Drilling fluid technology for igneous rocks in ultra-deep wells in the Shunbei Area, Tarim Basin[J]. Petroleum Drilling Techniques, 2016, 44(6): 17–23.

    [2] 林永学,王伟吉,金军斌. 顺北油气田鹰1井超深井段钻井液关键技术[J]. 石油钻探技术, 2019, 47(3): 113–120.

    LIN Yongxue, WANG Weiji, JIN Junbin. Key drilling fluid technology in the ultra deep section of Well Ying-1 in the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2019, 47(3): 113–120.

    [3] 黄维安,牛晓,沈青云,等. 塔河油田深侧钻井防塌钻井液技术[J]. 石油钻探技术, 2016, 44(2): 51–57.

    HUANG Weian, NIU Xiao, SHEN Qingyun, et al. Anti-sloughing drilling fluid technology for deep sidetracking wells in the Tahe Oilfield[J]. Petroleum Drilling Techniques, 2016, 44(2): 51–57.

    [4] 徐兴华,李前贵. 川西裂缝气藏储层保护研究新进展[J]. 天然气工业, 2008, 28(9): 77–79, 85. doi: 10.3787/j.issn.1000-0976.2008.09.024

    XU Xinghua, LI Qiangui. New progress in reservoir protection of fracture gas reservoir in West Sichuan[J]. Natural Gas Industry, 2008, 28(9): 77–79, 85. doi: 10.3787/j.issn.1000-0976.2008.09.024

    [5] 赵志国, 白彬珍,何世明,等. 顺北油田超深井优快钻井技术[J]. 石油钻探技术, 2017, 45(6): 8–13.

    ZHAO Zhiguo, BAI Binzhen, HE Shiming, et al. Optimaization of fast drilling technology for ultra-deep welsl in the Shunbei Oilfield[J]. Petroleum Drilling Techniques, 2017, 45(6): 8–13.

    [6] 鄢捷年.钻井液工艺学[M].东营: 石油大学出版社, 2001: 313–327.

    YAN Jienian. Drilling fluid technology[M]. Dongying: Petroleum University Press, 2001: 313–327.

    [7] 李世文,李寅,蔡东胜,等. 钻井液的抑制性评价与研究[J]. 中国石油和化工标准与质量, 2018, 38(1): 114–115. doi: 10.3969/j.issn.1673-4076.2018.01.056

    LI Shiwen, LI Yin, CAI Dongsheng, et al. Inhibitory evaluation and research of drilling fluid[J]. China Petroleum and Chemical Standard and Quality, 2018, 38(1): 114–115. doi: 10.3969/j.issn.1673-4076.2018.01.056

    [8] 李钟,罗石琼,罗恒荣,等. 多元协同防塌钻井液技术在临盘油田探井的应用[J]. 断块油气田, 2019, 26(1): 97–100.

    LI Zhong, LUO Shiqiong, LUO Hengrong, et al. Application of multivariate synergistic anti-caving drilling fluid technology in exploratory wells of Linpan Oilfield[J]. Fault-Block Oil & Gas Field, 2019, 26(1): 97–100.

    [9] 马京缘,潘谊党,于培志,等. 近十年国内外页岩抑制剂研究进展[J]. 油田化学, 2019, 36(1): 181–187.

    MA Jingyuan, PAN Yidang, YU Peizhi, et al. Research progress on shale inhibitors at home and abroad in recent ten years[J]. Oilfield Chemistry, 2019, 36(1): 181–187.

    [10] 黄进军,李文飞,田月昕,等. 水基钻井液用胺类页岩抑制剂特性及作用机理[J]. 油田化学, 2018, 35(2): 203–208, 213.

    HUANG Jinjun, LI Wenfei, TIAN Yuexin, et al. Properties and mechanism of shale inhibitor for water-based drilling fluid[J]. Oilfield Chemistry, 2018, 35(2): 203–208, 213.

    [11] 刘厚彬,孟英峰,李皋,等. 超深井井壁稳定性分析[J]. 天然气工业, 2008, 28(4): 67–69. doi: 10.3787/j.issn.1000-0976.2008.04.020

    LIU Houbin, MENG Yingfeng, LI Gao, et al. Analysis on the stability of ultra-deep well wall[J]. Natural Gas Industry, 2008, 28(4): 67–69. doi: 10.3787/j.issn.1000-0976.2008.04.020

    [12] 田乃林, 杨竞,程忠玲. 塔里木盆地中央隆起井壁稳定性影响因素及措施建议[J]. 石油天然气学报, 2010, 32(1): 120–122. doi: 10.3969/j.issn.1000-9752.2010.01.025

    TIAN Nailin, YANG Jing, CHENG Zhongling. The influential factors on wellbore stability in the central uplift of Tarim Basin[J]. Journal of Oil and Gas Technology, 2010, 32(1): 120–122. doi: 10.3969/j.issn.1000-9752.2010.01.025

    [13] 李成,白杨,于洋,等. 顺北油田破碎地层井壁稳定钻井液技术[J]. 钻井液与完井液, 2020, 37(1): 15–20.

    LI Cheng, BAI Yang, YU Yang, et al. Study and application of drilling fluid technology for stabilizing fractured formations in Shunbei Oilfield[J]. Drilling Fluid & Completion Fluid, 2020, 37(1): 15–20.

  • 期刊类型引用(12)

    1. 史配铭,刘召友,荣芳,武宏超,米博超,念富龙. 超深探井荔参1井钻井关键技术. 石油工业技术监督. 2024(02): 50-55 . 百度学术
    2. 田文欣,俞浩杰. 页岩储层高性能环保型水基钻井液体系及其环境影响评价. 断块油气田. 2023(01): 38-43 . 百度学术
    3. 王中华. 国内钻井液技术现状与发展建议. 石油钻探技术. 2023(04): 114-123 . 本站查看
    4. 喻化民,薛莉,吴红玲,李海彪,冯丹,杨冀平,鲁娜. 满深区块深井强封堵钻井液技术. 钻井液与完井液. 2022(02): 171-179 . 百度学术
    5. 薛小东,张晓瑞. 抗高温高密度水基完井液沉降稳定性实验分析. 当代化工. 2022(07): 1738-1742 . 百度学术
    6. 何立成,唐波. 准噶尔盆地超深井钻井技术现状与发展建议. 石油钻探技术. 2022(05): 1-8 . 本站查看
    7. 吴柏志,张怀兵. 满深1井碳酸盐岩地层自愈合水泥浆固井技术. 石油钻探技术. 2021(01): 67-73 . 本站查看
    8. 吴雄军,林永学,王显光,刘金华,李大奇. 顺北5-7井超深层奥陶系地层油基钻井液技术. 长江大学学报(自然科学版). 2021(01): 100-106 . 百度学术
    9. 袁进科,陈礼仪,王军伟,乔友浩. 青藏高原复杂地层地质钻探低固相冲洗液试验研究. 钻探工程. 2021(04): 79-84 . 百度学术
    10. 盛勇,叶艳,朱金智,宋瀚轩,张震,周广旭,王涛. 内核纳米乳液用于塔西南地区钻井液的优化. 钻井液与完井液. 2021(02): 170-175 . 百度学术
    11. 舒义勇,孙俊,曾东,徐思旭,周华安,席云飞. 塔里木油田跃满西区块高温恒流变钻井液研究与现场试验. 石油钻探技术. 2021(05): 39-45 . 本站查看
    12. 宿振国,王瑞和,刘均一,李光泉,李婧靓. 高性能环保水基钻井液的研究与应用. 钻井液与完井液. 2021(05): 576-582 . 百度学术

    其他类型引用(1)

表(6)
计量
  • 文章访问数:  737
  • HTML全文浏览量:  201
  • PDF下载量:  110
  • 被引次数: 13
出版历程
  • 收稿日期:  2020-05-04
  • 修回日期:  2020-06-28
  • 网络出版日期:  2020-07-13
  • 刊出日期:  2020-09-24

目录

    /

    返回文章
    返回