High Performance Anti-Sloughing Water Based Drilling Fluid Technology for Well Manshen 1 in the Ordovician Sangtamu Formation
-
摘要: 满深1断裂带奥陶系桑塔木组为泥岩、泥灰岩地层,裂缝发育,井壁坍塌风险极高,给安全钻井带来了极大挑战。满深1井钻进至井深7 392.54 m(桑塔木组)时钻遇走滑断裂带,发生坍塌卡钻,处理难度大,最终选择回填侧钻。为此,分析了桑塔木组地层特点,研究应用了高性能防塌水基钻井液技术:选择合理的钻井液密度,强化对井壁的力学支撑,并采用复合降滤失措施降低水敏性泥岩地层的水化;在引入多氨基井壁抑制剂的同时,提高K+质量浓度,实现多元抑制防塌;提高钻井液的抗温能力、润滑性能及封堵性能,以满足桑塔木组对抑制、封堵防塌及抗高温稳定性的要求。现场应用表明,该井侧钻过程中钻井液性能稳定,K+质量浓度保持在35 000 mg/L左右,150 ℃温度下的高压滤失量由11.3 mL降至8.0 mL,桑塔木组钻进过程中未发生井眼失稳情况,顺利钻至三开中完井深,套管一次下到设计位置。这表明,高性能防塌水基钻井液防塌效果显著,达到了预期目标。Abstract: The lithology of Ordovician Sangtamu Formation in Manshen 1 fault zone is composed of mudstone and marl with well developed fractures and high risk of wellbore collapse, which brings great challenges to safe drilling. When Well Manshen 1 was drilled to the depth of 7 392.54 m (Sangtamu Formation), a strike slip fault zone was encountered, resulting in well collapse and sticking of drill tools, which was difficult to deal with. Backfill sidetracking was thus implemented. To solve this, the formation characteristics of Sangtamu Formation were analyzed, and the high-performance anti-sloughing water based drilling fluid technology was developed. Reasonable drilling fluid density was selected to mechanically support the borehole wall, compound fluid loss control measures were adopted to reduce the damage caused by filtrate on the water sensitive mudstone formation, and multi-amino borehole wall inhibitors was introduced while increasing K+ content to achieve a multiple anti-sloughing effect. At the same time, the temperature resistance, lubrication property and plugging performance of drilling fluid were improved to meet the requirements of inhibition, plugging, anti-sloughing and high temperature stability of the Sangtamu Formation. The application in the sidetracked borehole of the Well Manshen 1 showed that the drilling fluid performance was stable during sidetracking, the K+ content was maintained to be at around 35 000 mg/L, and the high temperature and high pressure filtration rate was reduced from 11.3 mL to 8.0 mL at 150℃. During the whole construction, no borehole instability occurred in the Sangtamu Formation. The well was successfully drilled to the total depth of the third spud, and the casing was set in place in one run. This showed that the anti-sloughing effect of high performance water based drilling fluid was remarkable, and it achieved the expected goal.
-
满深1井位于满深1断裂带,地处塔北、塔中2大古隆起的鞍部,区域内主要发育满深1北东向走滑断裂。该井设计为四级井身结构:一开,采用ϕ444.5 mm钻头钻至井深1 498.00 m,下入ϕ365.4 mm表层套管,封固地表疏松层,防窜漏;二开,采用ϕ333.4 mm钻头钻至井深5 209.50 m,下入ϕ273.1 mm套管,封固二叠系易漏失复杂地层,并预留志留系稳定地层进行开窗侧钻;三开,采用ϕ241.3 mm钻头钻至井深7 509.50 m,进入一间房组4.00 m后中完,悬挂ϕ196.9 mm套管封固一间房组以上地层;四开,采用ϕ168.3 mm钻头钻至井深7 665.60 m,裸眼完钻。
满深1井三开主要钻遇志留系和奥陶系,奥陶系可细分为上奥陶统铁热克阿瓦提组、桑塔木组、良里塔格组和吐木休克组,以及中奥陶统一间房组。奥陶系桑塔木组埋深6 260.00~7 556.00 m,岩性主要为中厚层状灰色泥岩、泥灰岩,质地硬脆,裂缝发育,钻进中应力释放及滤液削弱了泥岩强度,井眼极易发生失稳垮塌[1-3]。该井三开采用钾基聚磺防塌钻井液钻进,钻至井深7 392.54 m接单根后难以下放到底,开泵划眼频繁憋停顶驱,在井深7 372.00 m以深反复划眼、倒划眼后上提下放仍有挂卡显示,从振动筛返出大量灰色泥岩掉块。为此,采取提高钻井液密度强化井壁力学支撑、补充磺化树脂材料进一步降低滤失量和加入KCl提高钻井液抑制性等措施,井下情况未见改善,划眼、倒划眼频繁憋停顶驱。多次大拉力上提活动钻具艰难钻至井深7 407.00 m后,因卡钻风险大,起钻换下旋转导向系统,应用“MWD+螺杆钻具”钻进;钻至井深7 392.54 m后划眼困难,频繁憋停顶驱,振动筛返出大量灰色泥岩掉块;继续钻进上提下放阻卡严重,振动筛一直有掉块返出;钻至井深7 480.57 m时上部钻具断裂,打捞困难,被迫回填侧钻。
满深1井回填后在井深7 150.00 m处侧钻,对侧钻用钻井液的抗温、抑制、防塌、封堵和润滑等性能进行了调整,按照“致密封堵、严控滤失”的思路,研究应用了高性能防塌水基钻井液,并采用了“MWD+螺杆钻具”侧钻。该井侧钻过程中扭矩正常,无划眼、倒划眼情况发生,振动筛返出岩屑代表性强,无掉块,取得了良好的应用效果。
1. 桑塔木组泥岩地层钻井液技术需求
根据邻井顺北4井的实钻情况及满深1井的地质、工程设计结果,满深1井奥陶系桑塔木组泥岩地层钻井液主要应具备以下性能:
1)桑塔木组地层埋藏深,温度可达140 ℃,钻井液需具备优良的抗温性能。
2)桑塔木组泥岩地层黏土矿物含量高(测量结果为40.9%),对水基钻井液滤液敏感性强,钻井液滤液侵入后泥岩含水量增加,孔隙压力升高,密度降低,导致泥页岩强度降低。因此,要求钻井液具有低滤失特性。
3)桑塔木组泥岩埋藏深,质地硬脆,地层揭开后,近井壁垂直方向、水平方向应力释放形成微裂缝;如不能及时封堵,微裂缝将在水力、应力等作用下相互连接而导致井眼失稳。因此,要求钻井液具有优良的屏蔽暂堵性能。
4)桑塔木组地层揭开后,在做好屏蔽暂堵及控制滤失的同时,还要求钻井液具备良好的造壁护壁性能,以及时对新钻井眼井壁进行加固,降低井眼失稳风险。
基于此,满深1井三开采用了钾基聚磺防塌钻井液,并采取了以下维护处理措施:1)进入桑塔木组泥岩地层后,将钻井液密度提高并维持在1.32 kg/L,以对井壁提供力学支撑;2)钻井液中磺化酚醛树脂、磺化褐煤树脂的含量均保持在3%,以控制钻井液高温(130 ℃)高压滤失量不高于12 mL;3)持续补充KCl,将K+质量浓度维持在20 000 mg/L;4)将乳化沥青与沥青粉复配,使沥青总含量小于3%。
但采取上述措施的效果并不理想,满深1井在7 392.54~7 480.57 m井段不断发生井下故障。分析认为:1)钾基聚磺防塌钻井液不能有效抑制灰色泥岩的剥落掉块,导致灰色泥岩层井眼失稳垮塌;2)钻井液的中压滤失量、高温高压滤失量较大,钻井液滤液对灰色泥岩强度破坏严重;3)钻井液中K+质量浓度达不到要求,且化学抑制材料单一,抑制作用有限;4)钻井液屏蔽暂堵能力不足,对微裂缝的瞬时封堵能力较弱[4]。因此,需要研究解决钻进桑塔木组泥岩地层时的钻井液问题,避免在满深1井侧钻中再次发生井下故障。
2. 高性能防塌水基钻井液技术研究
2.1 技术思路与钻井液基本配方
满深1井使用钾基聚磺防塌钻井液钻进桑塔木组泥岩地层时频繁发生井下故障,而其邻井顺北4井由水基钻井液转油基钻井液后井下恢复正常,这是由于油基钻井液具有高温高压滤失量低、抑制性强、抗温性好和润滑性强等特点[5-8]。因此,在满深1井侧钻前,从成本和性能2方面考虑,提出了“致密封堵、严控滤失”的技术思路,研究应用了高性能防塌水基钻井液[9]。以尽可能缩小与油基钻井液的性能差距和保障桑塔木组泥岩地层井壁稳定为核心目的,配制了高性能防塌水基钻井液,其基本配方为5.0%膨润土+0.3%烧碱+ 3.0%~5.0%磺化褐煤树脂SPNH+3.0%~5.0%磺化酚醛树脂SMP-Ⅲ+3.0%~5.0%沥青防塌剂FT-1A+5.0%~8.0%KCl+0.2%~0.4%多氨基井壁稳定剂[10]+4.0%超细碳酸钙+加重剂。
2.2 钻井液配方确定及抑制性评价
在钻井液基本配方的基础上,通过试验分析磺化树脂材料、KCl、多氨基井壁稳定剂和沥青防塌剂等对其性能的影响,确定高性能防塌水基钻井液的最终配方。
2.2.1 磺化树脂材料加量优化
钻井液添加剂:烧碱,磺化酚醛树脂SMP-Ⅲ,磺化褐煤树脂SPNH,沥青防塌剂FT-1A,KCl,多氨基井壁稳定剂,超细碳酸钙,加重剂。
试验条件:按顺序依次加入各钻井液添加剂,将密度调整为1.44 kg/L,低速搅拌均匀后,以6 000 r/min高速搅拌30 min,转入老化罐,在温度150 ℃下热滚4 h,冷却至50 ℃再以3 000 r/min高速搅拌5 min。
试验钻井液:1#配方,5.0%膨润土+0.3%烧碱+3.0%磺化褐煤树脂SPNH+3.0%磺化酚醛树脂SMP-Ⅲ+3.0%沥青防塌剂FT-1A+5.0%KCl+0.2%多氨基井壁稳定剂+4.0%超细碳酸钙+加重剂;2#配方,5.0%膨润土+0.3%烧碱+5.0%磺化褐煤树脂SPNH+5.0%磺化酚醛树脂SMP-Ⅲ+3.0%沥青防塌剂FT-1A+5.0%KCl+0.2%多氨基井壁稳定剂+4.0%超细碳酸钙+加重剂。
通过改变钻井液中磺化褐煤树脂SPNH和磺化酚醛树脂SMP-Ⅲ的加量,进行了磺化树脂材料对高性能防塌水基钻井液滤失性能的影响试验,结果见表1。
表 1 磺化树脂材料对钻井液滤失性能的影响试验结果Table 1. The influence of sulfonated resin on the filtration property of drilling fluid配方 塑性黏度/
(mPa∙s)动切力/
Pa静切力/Pa API滤失
量/mL高温高压滤
失量1)/mL初切 终切 1# 22 5.0 1.5 7.0 3.2 9.7 2# 23 5.5 1.5 7.5 2.0 8.2 注:1)在温度150 ℃条件下测得。 由表1可知,钻井液中添加3.0%和5.0%磺化树脂材料后的流变性差别较小,但配方2的API和高温高压滤失量更低,添加5.0%磺化树脂材料后钻井液具有更好的低滤失特性[10]。
2.2.2 KCl加量优化
试验钻井液添加剂和试验条件与2.2.1一致。
试验钻井液:2#配方;3#配方,5.0%膨润土+0.3%烧碱+5.0%磺化褐煤树脂SPNH+5.0%磺化酚醛树脂SMP-Ⅲ+3.0%沥青防塌剂FT-1A+8.0%KCl+0.2%多氨基井壁稳定剂+4.0%超细碳酸钙+加重剂。
通过改变钻井液中KCl的加量,进行了KCl对高性能防塌水基钻井液流性的影响试验,结果见表2。
表 2 KCl对钻井液流性的影响试验结果Table 2. The influence of KCl on rheology of drilling fluid试验条件 配方 塑性黏度/
(mPa∙s)动切力/Pa 静切力/Pa API滤失量/
mL高温高压滤失量1)/
mLK+质量浓度/
(mg·L–1)初切 终切 常温 2# 29 7.5 2.0 10.0 1.4 7.6 24 000 3# 27 6.0 2.0 8.0 1.6 8.0 35 000 150 ℃下老化24 h 2# 28 7.0 2.0 8.0 1.2 7.2 24 000 3# 24 6.0 1.5 7.0 1.5 7.8 35 000 150 ℃下老化48 h 2# 32 8.5 2.0 11.0 1.6 7.8 24 000 3# 28 5.0 2.0 8.5 1.6 8.0 35 000 150 ℃下老化72 h 2# 40 11.0 3.0 12.0 2.2 9.2 24 000 3# 30 5.5 2.0 7.5 1.8 9.6 35 000 注:1)在温度150 ℃条件下测得。 由表2可知,钻井液加入8.0%KCl可以在高温条件下保持更长时间的低黏切流态。虽然相较于加入5.0%KCl,钻井液加入8.0%KCl后的高温高压滤失量有所增加,但两者差异较小。因此,高性能防塌水基钻井液加入8.0%KCl后其性能更稳定。
2.2.3 多氨基井壁稳定剂加量优化
试验钻井液添加剂和试验条件与2.2.1和2.2.2一致。
试验钻井液:3#配方;4#配方,5.0%膨润土+0.3%烧碱+5.0%磺化褐煤树脂SPNH+5.0%磺化酚醛树脂SMP-Ⅲ+3.0%沥青防塌剂FT-1A+8.0%KCl+0.3%多氨基井壁稳定剂+4.0%超细碳酸钙+加重剂;5#配方,5.0%膨润土+0.3%烧碱+5.0%磺化褐煤树脂SPNH+5.0%磺化酚醛树脂SMP-Ⅲ+3.0%沥青防塌剂FT-1A+8.0%KCl+0.4%多氨基井壁稳定剂+4.0%超细碳酸钙+加重剂。
通过改变钻井液中多氨基井壁稳定剂的加量,进行了多氨基井壁稳定剂对高性能防塌水基钻井液稳定性的影响试验,结果见表3。
表 3 多氨基井壁稳定剂对钻井液稳定性的影响试验结果Table 3. The influence of multi-amino borehole wall stabilizer on drilling fluid stability配方 塑性黏度/(mPa∙s) 动切力/Pa 静切力/Pa API滤失量/mL 高温高压滤失量1)/mL 开罐情况 初切 终切 3# 28 6 2.0 9.0 1.6 8.2 上部有少许清液 4# 27 6 2.0 8.0 1.6 8.2 上下均匀 5# 25 5 1.5 8.0 1.7 8.0 上下均匀 注:1)在温度150 ℃条件下测得。 由表3可知,多氨基井壁稳定剂对钻井液有较好的稳定效果,加量为0.2%~0.4%时对钻井液的切力影响不大,但加量为0.3%多氨基井壁稳定剂后对钻井液流变性的影响较小,老化无清液析出;加入0.4%多氨基井壁稳定剂老化后,钻井液的高温高压滤失量略微降低,但降幅不大。因此,从性能及成本2方面考虑,选择加入0.3%的多氨基井壁稳定剂。
2.2.4 沥青防塌剂加量优化
试验钻井液添加剂和试验条件与2.2.1和2.2.3一致。
试验钻井液:4#配方;6#配方,5.0%膨润土+0.3%烧碱+5.0%磺化褐煤树脂SPNH+5.0%磺化酚醛树脂SMP-Ⅲ+4.0%沥青防塌剂FT-1A+8.0%KCl+0.3%多氨基井壁稳定剂+4.0%超细碳酸钙+加重剂;7#配方,5.0%膨润土+0.3%烧碱+5.0%磺化褐煤树脂SPNH+5.0%磺化酚醛树脂SMP-Ⅲ+5.0%沥青防塌剂FT-1A+8.0%KCl+0.3%多氨基井壁稳定剂+4.0%超细碳酸钙+加重剂。
通过改变钻井液中沥青防塌剂FT-1A的加量,进行了沥青防塌剂对高性能防塌水基钻井液防塌性能的影响试验,结果见表4。
表 4 沥青防塌剂对钻井液防塌性能的影响试验结果Table 4. The influence of asphalt anti-sloughing agent on anti-sloughing performance of drilling fluid配方 塑性黏度/(mPa∙s) 动切力/Pa 静切力/Pa API滤失量/mL 高温高压滤失量1)/mL 初切 终切 4# 28 6.5 2.0 8.0 1.6 8.2 6# 35 7.5 2.5 10.0 1.4 7.6 7# 43 9.0 3.0 12.0 1.2 7.2 注:1)在温度150 ℃条件下测得。 由表4可知,随着沥青防塌剂FT-1A加量增大,热滚后钻井液的黏度和切力逐渐升高,但钻井液的滤失量逐渐降低。从流性及控制滤失2方面考虑,将沥青防塌剂FT-1A的加量定为4.0%较为合理。
2.2.5 钻井液最终配方及岩屑回收率试验
通过试验优化磺化树脂材料、KCl、多氨基井壁稳定剂和沥青防塌剂的加量,确定高性能防塌水基钻井液的最终配方为5.0%膨润土+0.3%烧碱+5.0%磺化褐煤树脂SPNH+5.0%磺化酚醛树脂SMP-Ⅲ+4.0%沥青防塌剂FT-1A+8.0%KCl+0.3%多氨基井壁稳定剂+4.0%超细碳酸钙+加重剂。
为了评价所配钻井液的抑制性能,取满深1井桑塔木组灰色泥岩岩屑,分别加入到清水、钾基聚磺防塌钻井液和高性能防塌水基钻井液中进行了回收率试验。试验方法是:将岩屑烘干,取大颗粒岩屑50 g,加入到盛有350 mL试验介质的老化罐中,在100 ℃下滚动养护16 h,然后用40目分样筛回收岩屑,烘干称重,计算滚动回收率,结果见表5。
表 5 满深1井桑塔木组灰色泥岩岩屑回收率试验结果Table 5. The recovery ratio of grey mudstone of the Well Manshen 1 in the Sangtamu Formation试验编号 试验介质 岩屑回收率,% 1 清水 5.7 2 钾基聚磺防塌钻井液 56.8 3 高性能防塌水基钻井液 83.6 由表5可知,相对于钾基聚磺防塌钻井液,桑塔木组灰色泥岩岩屑在高性能防塌水基钻井液中的回收率更高,灰色泥岩岩屑回收率提高了26.8百分点,说明高性能水基钻井液更有利于桑塔木组灰色泥岩的稳定[11]。
3. 现场应用
按照上述研究结果,满深1井在井深7 150.00 m处侧钻后,将钻井液转化为高性能防塌水基钻井液,转化步骤:1)胶液中加入多氨基井壁稳定剂,配制成高浓度聚磺胶液补充到井浆中,2个循环周胶液补充完毕后保证井浆中的磺化树脂材料含量达到5.0%,多氨基井壁稳定剂含量达到0.3%;2)使用井浆配制沥青粉浆,配制后充分水化12 h,1个循环周均匀混入到井浆中,保证井浆中沥青含量达到4.0%;3)按照循环周向井浆中均匀加入超细碳酸钙、KCl,使K+质量浓度达到35 000 mg/L以上;4)按循环周向井浆中补充4.0%预水化膨润土浆(质量分数10.0%),并补充1.0%液体润滑剂植物油,使井浆中的含油量达到5.0%,在改善滤饼质量的同时降低摩阻。
高性能防塌水基钻井液的高温高压滤失量为7.8 mL(原钻井液为11.3 mL),瞬时滤失量仅为0.6 mL;K+质量浓度36 000 mg/L( 原钻井液为20 000 mg/L );中压滤饼和高温高压滤饼致密、坚韧。
满深1井7 150.00~7 380.00 m侧钻井段应用高性能防塌水基钻井液钻进过程中,扭矩平稳,振动筛返砂无掉块,接单根上提下放正常,无阻卡显示;在井深7 380.00 m处进行短起下钻,短起下钻井段为7 380.00~7 132.00 m,短起下钻顺利,无阻卡显示,井底返砂无掉块。井深7 380.00 m处短起下钻后,因为后续为老井眼易垮塌井段,所以将钻井液密度提高至1.45 kg/L,漏斗黏度提高至70 s左右[12-13],以强化携岩能力,顺利钻至三开中完井深7 509.50 m,未发生井下故障。
为了进一步说明高性能防塌水基钻井液的实际应用效果,对满深1井三开原井眼与侧钻井眼的钻井情况进行了对比,结果见表6。
表 6 满深1井三开原井眼与侧钻井眼钻井情况对比Table 6. Comparison on drilling conditions between the original third spud borehole and the sidetracked borehole in the Well Manshen 1井眼 钻进井段/m 井段长度/m 钻进时间/d 井下情况 原井眼 7 175.00~7 392.54 217.54 7.42 正常 7 392.54~7 480.57 88.03 13.50 反复划眼、倒划眼,掉块严重,扭矩异常,断钻具 侧钻井眼 7 166.00~7 480.57 314.57 10.21 正常,井眼通畅 从表6可以看出,侧钻井眼应用高性能防塌水基钻井液后,保障了奥陶系桑塔木组泥岩层井壁稳定,未发生井下故障;而且,相较于三开原井眼,长度相差不大的侧钻井眼钻井周期大幅缩短,钻井效率大幅提高。
4. 结论与认识
1)满深1井奥陶系桑塔木组泥岩层质地硬脆,钻进时由于应力释放,在近井地带形成了微裂缝,钻井液滤液沿微裂缝侵入使岩石强度降低,当钻井液性能达不到要求时,泥岩剥落掉块,造成反复划眼且划眼扭矩波动大、憋停转盘,增大了发生井下故障的风险,钻井效率降低。
2)针对满深1井奥陶系桑塔木组泥岩地层的井眼失稳问题,结合油基钻井液的性能和特点,提出了“致密封堵、严控滤失”的技术思路,研究应用了高性能防塌水基钻井液,通过采取降低钻井液滤失量、提高钻井液化学抑制能力和强化物理封堵等措施,多元协同保障井壁稳定。
3)满深1井侧钻井段应用高性能防塌水基钻井液后,桑塔木组泥岩地层井壁稳定,无掉块产生,接单根顺利,扭矩平稳,短起下钻井眼通畅,钻井效率大幅提高。
4)满深1井桑塔木组泥岩地层使用高性能防塌水基钻井液的成功实践说明,对于硬脆性泥岩地层的井眼失稳问题,应从提高力学支撑能力、严控中压滤失量和高温高压滤失量、无机盐KCl与有机抑制剂复配提高化学抑制能力和膨润土浆与超细碳酸钙配合强化屏蔽暂堵性能等方面着手,通过多元协同方式解决井眼失稳问题。
-
表 1 磺化树脂材料对钻井液滤失性能的影响试验结果
Table 1 The influence of sulfonated resin on the filtration property of drilling fluid
配方 塑性黏度/
(mPa∙s)动切力/
Pa静切力/Pa API滤失
量/mL高温高压滤
失量1)/mL初切 终切 1# 22 5.0 1.5 7.0 3.2 9.7 2# 23 5.5 1.5 7.5 2.0 8.2 注:1)在温度150 ℃条件下测得。 表 2 KCl对钻井液流性的影响试验结果
Table 2 The influence of KCl on rheology of drilling fluid
试验条件 配方 塑性黏度/
(mPa∙s)动切力/Pa 静切力/Pa API滤失量/
mL高温高压滤失量1)/
mLK+质量浓度/
(mg·L–1)初切 终切 常温 2# 29 7.5 2.0 10.0 1.4 7.6 24 000 3# 27 6.0 2.0 8.0 1.6 8.0 35 000 150 ℃下老化24 h 2# 28 7.0 2.0 8.0 1.2 7.2 24 000 3# 24 6.0 1.5 7.0 1.5 7.8 35 000 150 ℃下老化48 h 2# 32 8.5 2.0 11.0 1.6 7.8 24 000 3# 28 5.0 2.0 8.5 1.6 8.0 35 000 150 ℃下老化72 h 2# 40 11.0 3.0 12.0 2.2 9.2 24 000 3# 30 5.5 2.0 7.5 1.8 9.6 35 000 注:1)在温度150 ℃条件下测得。 表 3 多氨基井壁稳定剂对钻井液稳定性的影响试验结果
Table 3 The influence of multi-amino borehole wall stabilizer on drilling fluid stability
配方 塑性黏度/(mPa∙s) 动切力/Pa 静切力/Pa API滤失量/mL 高温高压滤失量1)/mL 开罐情况 初切 终切 3# 28 6 2.0 9.0 1.6 8.2 上部有少许清液 4# 27 6 2.0 8.0 1.6 8.2 上下均匀 5# 25 5 1.5 8.0 1.7 8.0 上下均匀 注:1)在温度150 ℃条件下测得。 表 4 沥青防塌剂对钻井液防塌性能的影响试验结果
Table 4 The influence of asphalt anti-sloughing agent on anti-sloughing performance of drilling fluid
配方 塑性黏度/(mPa∙s) 动切力/Pa 静切力/Pa API滤失量/mL 高温高压滤失量1)/mL 初切 终切 4# 28 6.5 2.0 8.0 1.6 8.2 6# 35 7.5 2.5 10.0 1.4 7.6 7# 43 9.0 3.0 12.0 1.2 7.2 注:1)在温度150 ℃条件下测得。 表 5 满深1井桑塔木组灰色泥岩岩屑回收率试验结果
Table 5 The recovery ratio of grey mudstone of the Well Manshen 1 in the Sangtamu Formation
试验编号 试验介质 岩屑回收率,% 1 清水 5.7 2 钾基聚磺防塌钻井液 56.8 3 高性能防塌水基钻井液 83.6 表 6 满深1井三开原井眼与侧钻井眼钻井情况对比
Table 6 Comparison on drilling conditions between the original third spud borehole and the sidetracked borehole in the Well Manshen 1
井眼 钻进井段/m 井段长度/m 钻进时间/d 井下情况 原井眼 7 175.00~7 392.54 217.54 7.42 正常 7 392.54~7 480.57 88.03 13.50 反复划眼、倒划眼,掉块严重,扭矩异常,断钻具 侧钻井眼 7 166.00~7 480.57 314.57 10.21 正常,井眼通畅 -
[1] 金军斌. 塔里木盆地顺北区块超深井火成岩钻井液技术[J]. 石油钻探技术, 2016, 44(6): 17–23. JIN Junbin. Drilling fluid technology for igneous rocks in ultra-deep wells in the Shunbei Area, Tarim Basin[J]. Petroleum Drilling Techniques, 2016, 44(6): 17–23.
[2] 林永学,王伟吉,金军斌. 顺北油气田鹰1井超深井段钻井液关键技术[J]. 石油钻探技术, 2019, 47(3): 113–120. LIN Yongxue, WANG Weiji, JIN Junbin. Key drilling fluid technology in the ultra deep section of Well Ying-1 in the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2019, 47(3): 113–120.
[3] 黄维安,牛晓,沈青云,等. 塔河油田深侧钻井防塌钻井液技术[J]. 石油钻探技术, 2016, 44(2): 51–57. HUANG Weian, NIU Xiao, SHEN Qingyun, et al. Anti-sloughing drilling fluid technology for deep sidetracking wells in the Tahe Oilfield[J]. Petroleum Drilling Techniques, 2016, 44(2): 51–57.
[4] 徐兴华,李前贵. 川西裂缝气藏储层保护研究新进展[J]. 天然气工业, 2008, 28(9): 77–79, 85. doi: 10.3787/j.issn.1000-0976.2008.09.024 XU Xinghua, LI Qiangui. New progress in reservoir protection of fracture gas reservoir in West Sichuan[J]. Natural Gas Industry, 2008, 28(9): 77–79, 85. doi: 10.3787/j.issn.1000-0976.2008.09.024
[5] 赵志国, 白彬珍,何世明,等. 顺北油田超深井优快钻井技术[J]. 石油钻探技术, 2017, 45(6): 8–13. ZHAO Zhiguo, BAI Binzhen, HE Shiming, et al. Optimaization of fast drilling technology for ultra-deep welsl in the Shunbei Oilfield[J]. Petroleum Drilling Techniques, 2017, 45(6): 8–13.
[6] 鄢捷年.钻井液工艺学[M].东营: 石油大学出版社, 2001: 313–327. YAN Jienian. Drilling fluid technology[M]. Dongying: Petroleum University Press, 2001: 313–327.
[7] 李世文,李寅,蔡东胜,等. 钻井液的抑制性评价与研究[J]. 中国石油和化工标准与质量, 2018, 38(1): 114–115. doi: 10.3969/j.issn.1673-4076.2018.01.056 LI Shiwen, LI Yin, CAI Dongsheng, et al. Inhibitory evaluation and research of drilling fluid[J]. China Petroleum and Chemical Standard and Quality, 2018, 38(1): 114–115. doi: 10.3969/j.issn.1673-4076.2018.01.056
[8] 李钟,罗石琼,罗恒荣,等. 多元协同防塌钻井液技术在临盘油田探井的应用[J]. 断块油气田, 2019, 26(1): 97–100. LI Zhong, LUO Shiqiong, LUO Hengrong, et al. Application of multivariate synergistic anti-caving drilling fluid technology in exploratory wells of Linpan Oilfield[J]. Fault-Block Oil & Gas Field, 2019, 26(1): 97–100.
[9] 马京缘,潘谊党,于培志,等. 近十年国内外页岩抑制剂研究进展[J]. 油田化学, 2019, 36(1): 181–187. MA Jingyuan, PAN Yidang, YU Peizhi, et al. Research progress on shale inhibitors at home and abroad in recent ten years[J]. Oilfield Chemistry, 2019, 36(1): 181–187.
[10] 黄进军,李文飞,田月昕,等. 水基钻井液用胺类页岩抑制剂特性及作用机理[J]. 油田化学, 2018, 35(2): 203–208, 213. HUANG Jinjun, LI Wenfei, TIAN Yuexin, et al. Properties and mechanism of shale inhibitor for water-based drilling fluid[J]. Oilfield Chemistry, 2018, 35(2): 203–208, 213.
[11] 刘厚彬,孟英峰,李皋,等. 超深井井壁稳定性分析[J]. 天然气工业, 2008, 28(4): 67–69. doi: 10.3787/j.issn.1000-0976.2008.04.020 LIU Houbin, MENG Yingfeng, LI Gao, et al. Analysis on the stability of ultra-deep well wall[J]. Natural Gas Industry, 2008, 28(4): 67–69. doi: 10.3787/j.issn.1000-0976.2008.04.020
[12] 田乃林, 杨竞,程忠玲. 塔里木盆地中央隆起井壁稳定性影响因素及措施建议[J]. 石油天然气学报, 2010, 32(1): 120–122. doi: 10.3969/j.issn.1000-9752.2010.01.025 TIAN Nailin, YANG Jing, CHENG Zhongling. The influential factors on wellbore stability in the central uplift of Tarim Basin[J]. Journal of Oil and Gas Technology, 2010, 32(1): 120–122. doi: 10.3969/j.issn.1000-9752.2010.01.025
[13] 李成,白杨,于洋,等. 顺北油田破碎地层井壁稳定钻井液技术[J]. 钻井液与完井液, 2020, 37(1): 15–20. LI Cheng, BAI Yang, YU Yang, et al. Study and application of drilling fluid technology for stabilizing fractured formations in Shunbei Oilfield[J]. Drilling Fluid & Completion Fluid, 2020, 37(1): 15–20.
-
期刊类型引用(0)
其他类型引用(4)
计量
- 文章访问数: 741
- HTML全文浏览量: 201
- PDF下载量: 110
- 被引次数: 4