页岩气井双暂堵压裂技术研究与现场试验

夏海帮

夏海帮. 页岩气井双暂堵压裂技术研究与现场试验[J]. 石油钻探技术, 2020, 48(3): 90-96. DOI: 10.11911/syztjs.2020065
引用本文: 夏海帮. 页岩气井双暂堵压裂技术研究与现场试验[J]. 石油钻探技术, 2020, 48(3): 90-96. DOI: 10.11911/syztjs.2020065
XIA Haibang. The Research and Field Testing of Dual Temporary Plugging Fracturing Technology for Shale Gas Wells[J]. Petroleum Drilling Techniques, 2020, 48(3): 90-96. DOI: 10.11911/syztjs.2020065
Citation: XIA Haibang. The Research and Field Testing of Dual Temporary Plugging Fracturing Technology for Shale Gas Wells[J]. Petroleum Drilling Techniques, 2020, 48(3): 90-96. DOI: 10.11911/syztjs.2020065

页岩气井双暂堵压裂技术研究与现场试验

基金项目: 国家科技重大专项“彭水地区常压页岩气勘探开发示范工程”(编号:2016ZX05061)资助
详细信息
    作者简介:

    夏海帮(1974—),男,浙江舟山人,1996年毕业于石油大学(华东)油藏工程专业,高级工程师,主要从事非常规天然气勘探开发工作。E-mail:112439883@qq.com

  • 中图分类号: TE357

The Research and Field Testing of Dual Temporary Plugging Fracturing Technology for Shale Gas Wells

  • 摘要:

    针对页岩气井暂堵压裂过程中存在暂堵压力升高不明显、施工压力未传递到裂缝内部、簇间暂堵与缝内暂堵无法有机结合等问题,通过选用压差聚合胶结型暂堵剂GTF-SM,并优化其用量及暂堵压裂工艺,形成了页岩气井双暂堵压裂技术。该技术在南川页岩气田LQ-1HF井分段压裂中试验了10段,与常规压裂井段相比,簇间暂堵试验井段的暂堵压力平均提高了4.3 MPa,缝内暂堵试验井段的暂堵压力平均提高了0.82 MPa,而且试验井段的裂缝长度平均增加了5.8%,裂缝面积平均增加了12.5%。该井采用ϕ10.0 mm油嘴放喷测试,平均产气量23.37×104 m3/d,平均套压20.17 MPa,产液量277.44 m3/d,优于同区块采用常规压裂技术的页岩气井。试验结果表明,页岩气井双暂堵压裂技术能够形成较好的复杂缝网,可以满足页岩气田高效开发及压裂作业降本增效的需求,具有良好的推广应用价值。

    Abstract:

    Temporary plugging fracturing of shale gas wells has been challenged by the problems of insignificant temporary plugging pressure increases, the fact that the temporary plugging pressure sometimes does not transmit to the fracture, and sometimes unsuccessful combinations of inter-cluster temporary plugging and intra-fracture temporary plugging. Hence, a dual temporary plugging fracturing technology for shale gas wells was developed by adopting a GTF-SM differential pressure polymer-cemented temporary plugging agent and optimizing its dosage. It was also necessary to optimize inter-cluster temporary plugging and intra-fracture temporary plugging fracturing processes. This technology was tested for 10 stages in the staged fracturing of Well Jiaoye LQ-1HF in the Nanchuan Shale Gas Field. Compared with the stages treated with the conventional fracturing technologies, the temporary plugging pressure of the inter-cluster temporary plugging test section was increased by 4.3 MPa, and the temporary plugging pressure of the intra-fracture temporary plugging test section was increased by 0.82 MPa. The fracture length of the test section was increased by 5.8%, and the fracture area was increased by 12.5% on average. The well was tested with a ϕ10.0 mm choke, and the average gas production was 23.37×104 m3/d, the average casing pressure was 20.17 MPa and the fluid production was 277.44 m3/d, which were advantageous over those of the conventional fracturing technologies. The test results showed that the dual temporary plugging fracturing technology for shale gas wells could form a better complex fracture network and enable the high-efficiency development and cost-effective fracturing of shale gas fields, hence showing a good value for wide adoption and application.

  • 图  1   簇间暂堵和缝内暂堵工艺原理示意

    Figure  1.   Schematic of the basic principles of inter-cluster temporary plugging and intra-fracture temporary plugging

    图  2   裂缝宽度与滤饼厚度的关系曲线

    Figure  2.   The relation curve between crack width and filter cake thickness

    图  3   第14段簇间暂堵压裂施工曲线

    Figure  3.   Fracturing curves of the inter-cluster temporary plugging fracturing in the 14th stage

    图  4   第20段缝内暂堵压裂施工曲线

    Figure  4.   Fracturing curves of intra-fracture temporary plugging fracturing in the 20th stage

    图  5   部分压裂井段微地震监测的裂缝分布总效应图

    Figure  5.   The total effect diagram for the distribution of fractures detected by microseismic monitoring in some fracturing sections

    表  1   暂堵剂GTF-SM的降解试验结果

    Table  1   Results of degradation performance test for GTF-SM temporary plugging agent

    温度/℃时间/h滤纸质量/g降解率,%
    反应前反应后
    90241.3713.809 2.48
    481.3771.99275.40
    721.3891.65189.50
    961.3901.64589.80
    110 81.3893.975–3.44
    121.3851.67188.60
    241.3751.50494.80
    361.3591.49194.70
    120 61.3484.138–11.60
    161.3781.53493.80
     注:降解液黏度为1~2 mPa·s,pH值为4~5。
    下载: 导出CSV

    表  2   簇间暂堵与缝内暂堵压裂井段的暂堵剂用量

    Table  2   Temporary plugging agent dosages of inter-cluster temporary plugging and intra-fracture temporary plugging

    暂堵类型裂缝宽度/mm裂缝高度/mm暂堵剂用量/kg
    簇间暂堵6~845184~210
    缝内暂堵6~830 65~138
    下载: 导出CSV

    表  3   簇间暂堵与缝内暂堵压裂井段的排量及暂堵剂用量

    Table  3   Pumping rates and temporary plugging agent dosages of inter-cluster temporary plugging and intra-fracturetemporary plugging

    暂堵类型压裂井段排量/(m3·min–1暂堵剂用量/kg
    簇间暂堵第10段3.0184
    第11段3.0184
    第14段4.0230
    第15段4.0210
    第18段4.0207
    缝内暂堵第5段8.0 92
    第7段6.0 92
    第8段6.0138
    第16段6.0138
    第20段17.5 65
    下载: 导出CSV

    表  4   LQ-1HF井双暂堵压裂井段暂堵压力统计结果

    Table  4   Statistical results of temporary plugging pressure in the dual temporary plugging fracturing section of Well LQ-1HF

    暂堵类型压裂井段暂堵压力/MPa
    暂堵前暂堵后提高幅度
    簇间暂堵第10段31.732.20.5
    第11段32.432.80.4
    第14段40.546.56.0
    第15段42.546.23.7
    第18段33.136.33.2
    缝内暂堵第5段39.039.80.8
    第7段32.232.80.6
    第8段32.132.50.4
    第16段38.438.60.2
    第20段57.759.82.1
    下载: 导出CSV
  • [1] 雷林,张龙胜,熊炜,等. 武隆区块常压页岩气水平井分段压裂技术[J]. 石油钻探技术, 2019, 47(1): 76–82. doi: 10.11911/syztjs.2018129

    LEI Lin, ZHANG Longsheng, XIONG Wei, et al. Multi-stage fracturing technology of normally pressured shale gas in horizontal wells in the Wulong Block[J]. Petroleum Drilling Techniques, 2019, 47(1): 76–82. doi: 10.11911/syztjs.2018129

    [2] 周成香,吴壮坤,丁桥. 电动压裂泵在页岩气井压裂中的先导试验[J]. 石油机械, 2018, 46(11): 104–108.

    ZHOU Chengxiang, WU Zhuangkun, DING Qiao. Pilot test of electric fracturing pump in shale gas well[J]. China Petroleum Machinery, 2018, 46(11): 104–108.

    [3] 陈安明,龙志平,周玉仓,等. 四川盆地外缘常压页岩气水平井低成本钻井技术探讨[J]. 石油钻探技术, 2018, 46(6): 9–14.

    CHEN Anming, LONG Zhiping, ZHOU Yucang, et al. Discussion on low-cost drilling technologies of normal pressure shale gas in the outer margin of the Sichuan Basin[J]. Petroleum Drilling Techniques, 2018, 46(6): 9–14.

    [4] 夏海帮. 可溶桥塞在南川页岩气田的应用研究[J]. 油气藏评价与开发, 2019, 9(4): 79–82. doi: 10.3969/j.issn.2095-1426.2019.04.015

    XIA Haibang. Research and application of soluble bridge plug in Nanchuan shale gas field[J]. Reservoir Evaluation and Development, 2019, 9(4): 79–82. doi: 10.3969/j.issn.2095-1426.2019.04.015

    [5] 习传学,高东伟,陈新安,等. 涪陵页岩气田西南区块压裂改造工艺现场试验[J]. 特种油气藏, 2018, 25(1): 155–159. doi: 10.3969/j.issn.1006-6535.2018.01.032

    XI Chuanxue, GAO Dongwei, CHEN Xinan, ea al. Field test of fracturing technology in the Southwest Section of Fuling Shale Gas Field[J]. Special Oil & Gas Reservoirs, 2018, 25(1): 155–159. doi: 10.3969/j.issn.1006-6535.2018.01.032

    [6] 刘伟,何龙,胡大梁,等. 川南海相深层页岩气钻井关键技术[J]. 石油钻探技术, 2019, 47(6): 9–14. doi: 10.11911/syztjs.2019118

    LIU Wei, HE Long, HU Daliang, et al. Key technologies for deep marine shale gas drilling in Southern Sichuan[J]. Petroleum Drilling Techniques, 2019, 47(6): 9–14. doi: 10.11911/syztjs.2019118

    [7] 时贤,程远方,常鑫,等. 页岩气水平井段内多簇裂缝同步扩展模型建立与应用[J]. 石油钻采工艺, 2018, 40(2): 247–252.

    SHI Xian, CHENG Yuanfang, CHANG Xin, et al. Establishment and application of the model for the synchronous propagation of multi-cluster fractures in the horizontal section of shale-gas horizontal well[J]. Oil Drilling & Production Technology, 2018, 40(2): 247–252.

    [8] 潘军,刘卫东,张金成. 涪陵页岩气田钻井工程技术进展与发展建议[J]. 石油钻探技术, 2018, 46(4): 9–15.

    PAN Jun, LIU Weidong, ZHANG Jincheng. Drilling technology progress and recommendations for the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2018, 46(4): 9–15.

    [9] 罗韵东,张全立,郭慧娟,等. 页岩气可膨胀衬管重复压裂技术现状与发展[J]. 石油矿场机械, 2019, 48(1): 81–85. doi: 10.3969/j.issn.1001-3482.2019.01.016

    LUO Yundong, ZHANG Quanli, GUO Huijuan, et al. Technology status and development for ESeal RF liner[J]. Oil Field Equipment, 2019, 48(1): 81–85. doi: 10.3969/j.issn.1001-3482.2019.01.016

    [10] 方裕燕,冯炜,张雄,等. 炮眼暂堵室内实验研究[J]. 钻采工艺, 2018, 41(6): 102–105. doi: 10.3969/J.ISSN.1006-768X.2018.06.29

    FANG Yuyan, FENG Wei, ZHANG Xiong, et al. Experimental study on temporary plugging of perforations[J]. Drilling & Production Technology, 2018, 41(6): 102–105. doi: 10.3969/J.ISSN.1006-768X.2018.06.29

    [11] 周彤,陈铭,张士诚,等. 非均匀应力场影响下的裂缝扩展模拟及投球暂堵优化[J]. 天然气工业, 2020, 40(3): 82–91. doi: 10.3787/j.issn.1000-0976.2020.03.010

    ZHOU Tong, CHEN Ming, ZHANG Shicheng, et al. Simulation of fracture propagation and optimization of ball-sealer in-stage diversion under the effect of heterogeneous stress field[J]. Natural Gas Industry, 2020, 40(3): 82–91. doi: 10.3787/j.issn.1000-0976.2020.03.010

    [12] 路保平,丁士东. 中国石化页岩气工程技术新进展与发展展望[J]. 石油钻探技术, 2018, 46(1): 1–9.

    LU Baoping, DING Shidong. New progress and development prospect in shale gas engineering technologies of Sinopec[J]. Petroleum Drilling Techniques, 2018, 46(1): 1–9.

    [13] 蒋廷学,贾长贵,王海涛,等. 页岩气网络压裂设计方法研究[J]. 石油钻探技术, 2011, 39(3): 36–40. doi: 10.3969/j.issn.1001-0890.2011.03.006

    JIANG Tingxue, JIA Changgui, WANG Haitao, et al. Study on network fracturing design method in shale gas[J]. Petroleum Drilling Techniques, 2011, 39(3): 36–40. doi: 10.3969/j.issn.1001-0890.2011.03.006

    [14] 王坤,葛腾泽,曾雯婷. 低产油气井强制裂缝转向重复压裂技术[J]. 石油钻探技术, 2018, 46(2): 81–86.

    WANG Kun, GE Tengze, ZENG Wenting. Re-fracturing technique using forced fracture re-orientation of low production oil and gas wells[J]. Petroleum Drilling Techniques, 2018, 46(2): 81–86.

    [15] 王贤君,王维,张玉广,等. 低渗透储层缝内暂堵多分支缝压裂技术研究[J]. 石油地质与工程, 2018, 32(3): 111–113. doi: 10.3969/j.issn.1673-8217.2018.03.029

    WANG Xianjun, WANG Wei, ZHANG Yuguang, et al. Multi-branch fracturing technique of low permeability reservoirs by temporary plugging within fractures[J]. Petroleum Geology and Engineering, 2018, 32(3): 111–113. doi: 10.3969/j.issn.1673-8217.2018.03.029

    [16] 王刚. 低渗透油田缝内转向压裂增产技术研究与应用[J]. 化学工程与装备, 2017(4): 63–65.

    WANG Gang. Research and application of in fracture diverting fracturing stimulation technology in low permeability oilfield[J]. Fujian Chemical Industry, 2017(4): 63–65.

    [17] 陈志刚,杨富,陶荣德,等. 缝内转向压裂工艺技术在姬塬油田老井改造中的应用及评价[J]. 石油化工应用, 2019, 38(2): 78–83. doi: 10.3969/j.issn.1673-5285.2019.02.018

    CHEN Zhigang, YANG Fu, TAO Rongde, et al. Application and evaluation of steering fracturing technology in the reconstruction of old wells in Jiyuan Oilfield[J]. Petrochemical Industry Application, 2019, 38(2): 78–83. doi: 10.3969/j.issn.1673-5285.2019.02.018

  • 期刊类型引用(5)

    1. 王治磊. 基于应力比的延长抽油杆疲劳寿命设计方法. 非常规油气. 2023(03): 127-134+142 . 百度学术
    2. 蔡文斌,李文,胥元刚. 基于三参数威布尔分布模型的超高强度抽油杆概率疲劳寿命曲线. 中国石油大学学报(自然科学版). 2022(04): 79-85 . 百度学术
    3. 吕庆钢,薛凯,朱稿林,徐蔼彦,史交齐,姬丙寅. 抽油光杆早期失效原因分析. 石油工业技术监督. 2022(11): 1-5+11 . 百度学术
    4. 王志强,黄小光,郭廷顺,裴召华. 超高强钢FG20在不同pH高含硫油田水中的腐蚀行为. 机械工程材料. 2020(12): 42-46 . 百度学术
    5. 陈昂,于会永,田刚,李皓,张海鑫,曾德智. 高强度HY级抽油杆在含硫工况下的环境敏感断裂评价. 断块油气田. 2018(06): 823-826 . 百度学术

    其他类型引用(7)

图(5)  /  表(4)
计量
  • 文章访问数:  1297
  • HTML全文浏览量:  631
  • PDF下载量:  122
  • 被引次数: 12
出版历程
  • 收稿日期:  2020-01-15
  • 修回日期:  2020-03-22
  • 网络出版日期:  2020-05-08
  • 刊出日期:  2020-04-30

目录

    /

    返回文章
    返回