Evaluation Methods and Engineering Application of the Feasibility of “Double Sweet Spots”in Shale Gas Reservoirs
-
摘要:
页岩气层“双甜点”(地质甜点和工程甜点)评价是衡量页岩地层是否具有开采价值的有效方法,定量化评价“双甜点”有利于优化钻井和压裂施工,提高页岩气开发效率。针对甜点参数众多及甜点评价精度低的问题,利用相关系数法优选了主要甜点参数,采用独立性权系数法对地质甜点和工程甜点进行了定量表征。以涪陵页岩气田焦石坝区块地层为研究对象,优选出了5个地质甜点参数和4个工程甜点参数,地质甜点表征的相关系数为0.89,工程甜点表征的相关系数为0.85。研究结果表明,页岩气层“双甜点”及可压裂性可以用于钻井和压裂层位优选、水平钻进方位优化及套管工程安全管理方面。在此基础上,分析并展望了页岩气层的可压裂性、水平钻进方位优化技术对套管安全和大体积压裂的积极作用和优势。
Abstract:The determination of“double sweet spots”(the geological and engineering sweet spot) in shale gas reservoirs is an effective method to determine whether it economically worthy of drilling, and the quantitative study of“double sweet spots”is also conducive to the optimization of drilling and fracturing, hence improving the development efficiency of shale gas. In view of the problems of numerous sweet spot parameters and low accuracy of sweet spot evaluation, the main sweet spot parameters were optimized by using the correlation coefficient method, whereby the independent weight coefficient method was adopted to quantitatively characterize both the geological sweet spot and the engineering sweet spot. Taking the strata of Jiaoshiba Block in the Fuling Shale Gas Field as the research object, five primary geological sweet spot parameters and four primary engineering sweet spot parameters were selected. The correlation coefficient of geological sweet spot was 0.89, and that of engineering sweet spot was 0.85. The research results showed that the“double sweet spots”and fracturing ability of shale gas could be used to optimize drilling and fracturing layers, horizontal drilling azimuth and casing engineering safety management. On this basis, the positive role and advantages of horizontal drilling azimuth optimization for casing safety and large volume fracturing as well as determining fracability in shale gas reservoir were analyzed and deemed feasible.
-
水力压裂在低孔低渗油气藏中应用广泛,其影响体现在不同方面。一方面,水力压裂可增加储层裂缝数量以及裂缝之间的连通性,对油气的增产具有较大贡献;另一方面,随之而来的微地震、环境污染等问题也不容忽视。国内外众多学者对水力压裂技术的影响先后进行了调查和分析[1–10]。其中,微地震监测是评价水力压裂效果的常用手段之一[11–15],通过布置在邻井或者地面上的传感器探测水力压裂产生的微地震信号,并通过数据处理获取微地震震源的信息。随着微地震在时间和空间上的发生,监测结果连续不断更新,形成裂缝延伸的动态图[16–17]。微地震测量速度快,现场应用方便,能够实时确定微地震事件的位置,并能确定水力裂缝的高度、长度和方位,但该技术仍存在许多不足,例如对噪声敏感度高、数据处理过程复杂以及严重依赖高精度地层速度模型等。
一些研究人员尝试利用声波测井资料进行水力压裂效果评价[18–26]。当井外存在裂缝时,直达斯通利波振幅会产生衰减[27]。特别是当裂缝中充填流体时,直达斯通利波振幅衰减显著[28]。在此过程中部分能量沿着射孔孔眼和压裂缝进入地层,部分能量形成了反射斯通利波[29]。然而,如何压制噪声信号以及进一步对近井压裂缝成像,成为制约斯通利波应用的关键因素。常规声波测井方法径向探测范围通常在3 m以内,无法满足远井眼处裂缝探测的需求。于是人们发展了基于声波反射波裂缝成像的远探测声波测井方法。刘鹏、李宁等人[30–31]提出了一种时移远探测方法,在压裂前处理远探测资料获取井旁天然裂缝成像,并在压裂后再次测试,获取井旁天然裂缝和压裂裂缝的综合成像,通过对比二者的差异,获取井眼外数十米范围内压裂缝的发育情况。然而,当压裂缝密度较大时,地层速度模型将有所改变,此时传统的叠后偏移成像方法已明显不适用。
针对上述问题,在基于声波测井资料的多尺度压裂缝评价方法基础上,通过研究形成了基于阵列声波测井的井下多尺度压裂效果评价方法,即对于近井处压裂缝,利用反射斯通利波对裂缝的宽度、延伸、分布等参数进行评价;对于远井处压裂缝,运用叠前深度偏移成像算法实现压裂缝的高精度成像。该方法在某油田页岩油水平井(X1井)进行了现场应用,验证了其有效性,为有效监测水力压裂效果、提高储层压裂效果评价精度提供了手段。
1. 近井压裂缝成像方法
基于反射斯通利波成像的流程如图1所示。从原始波形出发,经过数字带通滤波滤除背景噪声、拉东域滤波滤除井眼直达斯通利波信号、预测反褶积压制反射斯通利波多次波信号、共声源道集叠加压制相干噪声信号、上下行反射斯通利波分离与成像等5个处理步骤,获取反射斯通利波成像结果,反映近井处压裂缝的发育情况。基于成像结果的反射事件拾取和斯通利波反射振幅计算,进一步定量评价近井处压裂缝的发育密度与强度。
以X1井为例,近井压裂缝成像方法的应用效果如图2所示。通过对比滤波前后的波形,发现该方法可有效压制高阶模式波和低频噪声信号,从而获取较为纯净的斯通利波,包括直达斯通利波和反射斯通利波。图2中,第4道代表Radon滤波后的波形数据(LDST),可以发现其中只包含倾斜方向的反射斯通利波,这说明Radon滤波方法有效滤除了竖直分布的直达斯通利波;第5道代表预测反褶积处理后的波形(PDST),该处理方法目的是压制反射斯通利波的多次波信号;第6道代表反射斯通利波的共声源道集叠加处理结果,与叠加前波形相比,叠加使反射斯通利波有效压制了残余直达斯通利波等相干噪声信号,反射斯通利波更为清晰并且同相轴更为连续。进一步对上下行反射斯通利波做波分离,将井眼设置为对称轴,将下行反射斯通利波旋转180°,得到近井处压裂缝成像结果(第7道,UDST),发现上下行反射斯通利波同相轴连成一条直线,该直线穿过井眼的位置即为压裂缝所在位置。
零时刻相交的上下行反射斯通利波对应一条过井压裂缝。因此,这2种反射斯通利波对应的振幅均能指示该缝的发育情况,基于此,提出了压裂缝拾取与定量评价方法。该方法具体为:分别沿上下行反射斯通利波的延伸方向,在时间–深度域开窗,计算窗口内反射斯通利波振幅总和。最后得到反射斯通利波振幅杆状图,见图2中第8道。其中,事件数代表近井处压裂缝数量,反射斯通利波振幅的强弱则代表压裂缝的发育情况,比如压裂缝张开度、延伸长度等。
2. 远井压裂缝成像方法
考虑井眼外网状压裂缝导致地层速度不均匀的问题,提出了适用于测井观测系统的叠前深度偏移成像方法,用于提升井眼外数十米范围内水力压裂缝成像的精度,其成像公式为:
I{{(}}{\boldsymbol{x}}{{) = }}\int\limits_{{{\boldsymbol{x}}_{\mathrm{S}}}} {wm({{\boldsymbol{x}}_{\mathrm{S}}},{{\boldsymbol{x}}_{\text{R}}}, t({\boldsymbol{x}}) , p({\boldsymbol{x}}))} d{{\boldsymbol{x}}_{\mathrm{S}}} (1) \begin{split} &\;\\[-8pt] & 其中\qquad\qquad\qquad t({\boldsymbol{x}}) = {t_{\mathrm{S}}}({\boldsymbol{x}}) + {t_{\mathrm{R}}}({\boldsymbol{x}})\qquad \end{split} (2) p({\boldsymbol{x}}) = p({{\boldsymbol{x}}_{\text{R}}}) (3) 式中:
I({\boldsymbol{x}}) 为成像结果,mV;xS和xR为炮检点坐标,m;x为成像点坐标,m;w 为成像权重系数;m 为测井数据,mV;{t_{\mathrm{S}}} 为炮端旅行时,s;{t_{\mathrm{R}}} 为检波点端旅行时,s;t 为成像点总旅行时,s;p({\boldsymbol{x}}) 为成像点射线参数,s/m;p({{\boldsymbol{x}}_{\text{R}}}) 为检波点射线参数,s/m。常规Kirchhoff叠前深度成像仅考虑走时关系,可借助长观测孔径和密集接收器的数据在成像过程中的叠加来消除成像假象,而测井数据并不具备这一条件。此处针对测井观测系统的Kirchhoff叠前深度成像不仅考虑走时关系,同时还将接收端数据射线参数作为成像条件,避免了成像过程中的画弧过程,从而能够消除成像噪音。
为了验证测井观测系统叠前深度偏移成像算法的有效性,用该算法处理X1井的声波测井资料。X1井3 525~3 615 m井段的传统叠后偏移成像结果如图3(a)所示,中间为井眼,左右分别为井眼向外50 m范围内储层中的裂缝成像结果。从图3(a)可观察到明显的压裂缝反射信号,但由于成像精度较差,裂缝无法清晰显现。图3(b)展示了测井观测系统叠前深度偏移成像结果,从图3(b)可清楚观察到裂缝形态,特别是大尺度压裂缝的成像聚焦效果得到明显增强。利用该算法可提升压裂缝成像的精度,成像范围可达50 m。
通常压裂缝既包含与井眼近垂直的主裂缝,还包含密度更大、角度随机分布的次级裂缝,它们共同构成了复杂压裂缝系统。为了综合评价井眼外数十米范围内压裂缝的发育情况,提出了基于远探测成像结果的反射斯通利波振幅评价方法。考虑到井眼外0~3 m范围内远探测反射斯通利波振幅受直达斯通利波等噪声干扰严重,并且反射斯通利波振幅可用于评价井眼外3 m范围内压裂缝的发育情况,因此以3~50 m远探测偏移图中振幅的平均值为远探测反射斯通利波振幅。它能定量评价井眼外3~50 m的压裂缝发育情况,其值越大,代表压裂缝越发育;反之,代表没有较多压裂缝。图4为X1井远井裂缝定量评价结果,第1道为自然伽马,第2道为深度,第3道为3525~3615 m井段的远探测偏移成像图(2个方框代表远探测反射波振幅的计算窗口),第4道为远探测反射斯通利波振幅计算结果。从第4道可以看出不同井深处反射斯通利波的振幅存在差异,特别是在压裂缝发育深度(3 525~3 575m)反射斯通利波振幅明显增大,这说明远探测反射斯通利波振幅能够定量评价井眼外3~50 m压裂缝的发育情况。
3. 现场应用
X1井是中国西部某油田丛式钻井平台X上的一口水平井,目的层为页岩油储层。该井实钻水平段长度1 360 m,页岩油储层的钻遇率大于80%。为了改善储层的渗透性,完井后实施了压裂。基于压裂设计方案,共压裂19段99簇。2021年底该井投产,在稳产高产大约6个月后,产液量出现阶梯性下降。下降原因可能与该地区天然断层/裂缝比较发育有关,天然裂缝与压裂缝构成了复杂裂缝系统。
为评价压裂后的裂缝特征,以指导该平台低产井的治理和其他待钻井压裂方案的优化,该井进行了阵列声波测井。考虑到水平井井眼直径小、测量环境差,选择过钻头阵列声波测井仪(见图5)进行测井。仪器的测井模式有3种:1)单极声源的低频测井模式,主要目的是获得斯通利波信号;2)单极声源的宽频测井模式,主要目的是获得单极全波列波形数据;3)偶极声源的测井模式,目的是获取偶极四分量波形数据。在分析上述测井模式测得波形质量后,选择单极低频模式测得波形进行斯通利波提取及成像,评价近井眼处压裂缝发育情况;选择单极全频模式测得波形实施远探测处理,评价远井眼处压裂缝的发育情况。
在利用提出的多尺度压裂缝成像方法评价压裂缝发育情况之前,需建立一套评价标准(见表1),将压裂效果分为好、中、差3个级别。当近井处和远井处的压裂缝均较为发育时,压裂效果为好,表示井眼外50 m范围内的压裂缝均较为发育;当近井处压裂缝不发育而远井处压裂缝发育,或者近井处压裂缝发育而远井处压裂缝不发育时,可判定压裂效果为中;当近井处和远井处压裂缝均不发育,则判定为压裂效果差。基于该评价标准,对X1井压裂效果进行评价,结果如图6所示,层段1~4和12~14近井处和远井处压裂缝均较为发育,压裂效果为好;层段5~9、11和16~19压裂效果为中;而层段10和15压裂缝不发育,压裂效果为差。
表 1 基于声波测井资料的水力压裂评价标准Table 1. Hydraulic fracturing evaluation criteria based on acoustic logging data近井筒压裂缝发育情况 远井筒压裂缝发育情况 压裂评价标准 发育 发育 好 发育 不发育 中 不发育 发育 不发育 不发育 差 针对单个压裂段,压裂液注入量通常与裂缝发育程度呈正相关关系。较高的注入量通常表明裂缝相对发育;反之,裂缝则较不发育。为判断基于声波测井资料的水力压裂裂缝评价的有效性,分析了X1井19段的压裂评价结果与压裂液注入量(见图7),第3、4和14段的压裂液注入量较高,超过1300 m3。第10和第15段的压裂效果较差,压裂液注入量确实较低,均低于1250 m3。然而,压裂液注入量与裂缝发育之间也存在一定差异,例如第8段的压裂效果评价结果表明,该段的压裂效果为中等(见图6),压裂液注入量却高达1561 m3。
通过处理X1井水力压裂前的地震勘探数据可获取地震成像剖面,进一步对其实施属性提取便可得到地震蚂蚁体属性图,如图8所示。该图可表征X1水平井旁大尺度天然裂缝或断层的发育情况,从图8可观察到,第4段和第13段存在穿过X1井的天然裂缝。通过与图7对比,可以发现这2个压裂段也是压裂缝发育段,表明天然裂缝或断层的存在对压裂裂缝的形成是有益的。最终,天然裂缝和人工裂缝形成了一个复杂的裂缝系统。
基于阵列声波测井资料的多尺度压裂效果评价方法在X1井应用成功,说明利用声波测井技术可实现近井—远井压裂缝发育情况评价,这将为压裂方案的制定和油气田高效开发提供关键技术支撑。
4. 结 论
1)基于阵列声波测井的井下多尺度压裂效果评价方法,包括基于斯通利波的近井筒压裂缝成像和基于远探测反射斯通利波的远井筒压裂缝成像,能够精细展示井旁50 m范围内压裂缝的发育情况。
2)针对近井筒压裂缝评价,提出的反射斯通利波提取、成像及裂缝定量表征方法,能够清晰展示近井处压裂缝发育情况;针对远井处压裂缝评价,提出的测井观测系统叠前远探测偏移成像方法,同时将反射斯通利波走时关系和接收端数据射线参数作为成像条件,有效压制了成像过程中产生的画弧噪声,提升了远井筒压裂缝成像的精度。
3)利用X1井声波测井资料,采用多尺度压裂缝评价方法评价了该井的压裂效果,验证了该方法的有效性。
-
-
[1] AMBROSE R J, HARTMAN R C, CAMPOS M D, et al. New pore-scale considerations for shale gas in place calculations[R]. SPE 131772, 2010.
[2] PRISE G J, STEWART D R, BIRD T M, et al. Successful completion operations on ravenspurn north development[R]. SPE 26744, 1993.
[3] 潘仁芳, 龚琴, 鄢杰, 等. 页岩气藏“甜点”构成要素及富气特征分析: 以四川盆地长宁地区龙马溪组为例[J]. 天然气工业, 2016, 36(3): 7–13. doi: 10.3787/j.issn.1000-0976.2016.03.002 PAN Renfang, GONG Qin, YAN Jie, et al. Elements and gas enrichment laws of sweet spots in shale gas reservoir: a case study of the Longmaxi Formation in Changning Block, Sichuan Basin[J]. Natural Gas Industry, 2016, 36(3): 7–13. doi: 10.3787/j.issn.1000-0976.2016.03.002
[4] 邹才能, 杨智, 张国生, 等. 常规-非常规油气“有序聚集”理论认识及实践意义[J]. 石油勘探与开发, 2014, 41(1): 14–27. doi: 10.11698/PED.2014.01.02 ZOU Caineng, YANG Zhi, ZHANG Guosheng, et al. Conventional and unconventional petroleum “orderly accumulation”: concept and practical significance[J]. Petroleum Exploration and Development, 2014, 41(1): 14–27. doi: 10.11698/PED.2014.01.02
[5] CLARKSON C R, WOOD J, BURGIS S E, et al. Nanopore structure analysis and permeability predictions for a tight gas/shale reservoir using low-pressure adsorption and mercury intrusion techniques[R]. SPE 155537, 2012.
[6] BULLER D, HUGHES S N, MARKET J, et al. Petrophysical evaluation for enhancing hydraulic stimulation in horizontal shale gas wells[R]. SPE 132990, 2010.
[7] RICKMAN R, MULLEN M J, PETRE J E, et al. Practical use of shale petrophysics for stimulation design optimization: all shale plays are not clones of the Barnett shale[R]. SPE 115258, 2008.
[8] ROSS D J K, BUSTIN R M. Shale gas potential of the lower jurassic gordondale member, northeastern British Columbia, Canada[J]. Bulletin of Canadian Petroleum Geology, 2007, 55(1): 51–75. doi: 10.2113/gscpgbull.55.1.51
[9] WARPINSKI N R, CLARK J A, SCHMIDT R A, et al. Laboratory investigation on the-effect of in-situ stresses on hydraulic fracture containment[J]. Society of Petroleum Engineers Journal, 1982, 22(3): 333–340. doi: 10.2118/9834-PA
[10] ANDERSON G D. Effects of friction on hydraulic fracture growth near unbonded interfaces in rocks[J]. Society of Petroleum Engineers Journal, 1981, 21(1): 21–29. doi: 10.2118/8347-PA
[11] BLAIR S C, THORPE R K, HEUZE F E, et al. Laboratory observations of the effect of geologic discontinuities on hydrofracture propagation[R]. ARMA-89-0443, 1989.
[12] DANESHY A A. Hydraulic fracture propagation in layered formations[J]. Society of Petroleum Engineers Journal, 1978, 18(1): 33–41. doi: 10.2118/6088-PA
[13] 廖东良, 路保平. 页岩气工程甜点评价方法: 以四川盆地焦石坝页岩气田为例[J]. 天然气工业, 2018, 38(2): 43–50. doi: 10.3787/j.issn.1000-0976.2018.02.006 LIAO Dongliang, LU Baoping. An evaluation method of engineering sweet spots of shale gas reservoir development: a case study from the Jiaoshiba Gas Field, Sichuan Basin[J]. Natural Gas Industry, 2018, 38(2): 43–50. doi: 10.3787/j.issn.1000-0976.2018.02.006
[14] 廖东良, 肖立志, 张元春. 基于矿物组分与断裂韧度的页岩地层脆性指数评价模型[J]. 石油钻探技术, 2014, 42(4): 37–41. LIAO Dongliang, XIAO Lizhi, ZHANG Yuanchun. Evaluation model for shale brittleness index based on mineral content and fracture toughness[J]. Petroleum Drilling Technigues, 2014, 42(4): 37–41.
[15] 廖东良, 曾义金. 利用测井资料建立地层剪破裂模型[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1268–1276. LIAO Dongliang, ZENG Yijin. Establishion of formation shear fracture model by logging data[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(4): 1268–1276.
[16] 王珍应, 马德坤, 杜坚. 钻头钻进方向预测研究[J]. 石油机械, 1994, 22(6): 19–22, 28. WANG Zhenying, MA Dekun, DU Jian. Study on prediction of drilling direction[J]. China Petroleum Machinery, 1994, 22(6): 19–22, 28.
[17] 尹虎, 唐志强, 黄晓川. 定向井井壁崩落与钻进方向优化分析[J]. 钻采工艺, 2014, 37(3): 31–33. doi: 10.3969/J.ISSN.1006-768X.2014.03.09 YIN Hu, TANG Zhiqiang, HUANG Xiaochuan. Analysis of borehole wall spallation and drilling direction optimization of directional well[J]. Drilling & Production Technology, 2014, 37(3): 31–33. doi: 10.3969/J.ISSN.1006-768X.2014.03.09
-
期刊类型引用(4)
1. 李宁,刘鹏,武宏亮,李雨生,张文豪,王克文,冯周,王浩. 远探测声波测井处理解释方法发展与展望. 石油勘探与开发. 2024(04): 731-742 . 百度学术
2. LI Ning,LIU Peng,WU Hongliang,LI Yusheng,ZHANG Wenhao,WANG Kewen,FENG Zhou,WANG Hao. Development and prospect of acoustic reflection imaging logging processing and interpretation method. Petroleum Exploration and Development. 2024(04): 839-851 . 必应学术
3. 刘平,刘东明,姬程伟,王璐,李栋,王志兴,王天,杜元凯. 水力压裂监测与诊断技术进展与组合应用. 测井技术. 2024(05): 721-730 . 百度学术
4. 胡晓东,王雅晶,丘阳,易普康,蒋宗帅,熊壮. 矿场压裂停泵水击信号滤波效果评价指标研究. 石油钻探技术. 2024(06): 131-140 . 本站查看
其他类型引用(0)