Experimental Study on Igneous Rock Abrasiveness
-
摘要:
火成岩钻井设计优化的关键是了解火成岩的可钻性和研磨性,但至今还未形成一套测试火成岩研磨性的有效方法。为此,采用自主研发的岩石研磨性测定装置,测试了不同岩性火成岩岩样的研磨性,并分析了火成岩研磨性与其单轴抗压强度和矿物成分含量之间的关系。测试结果表明,在岩样转速8 r/min、钻压800 N、钻头转速198 r/min的条件下,以破碎单位体积岩石研磨标准件的磨损质量作为研磨性指标,可以很好地分辨不同岩性火成岩的研磨性,且火成岩的研磨性与其单轴抗压强度和等效石英含量均呈较好的幂函数关系。研究结果表明,以火成岩单轴抗压强度为基础建立的火成岩研磨性预测模型,可以很好地预测火成岩的研磨性,可为优化火成岩钻井设计提供理论依据。
Abstract:Igneous oil and gas reservoirs are hot spots in well drilling. But, drilling them is extremely difficult due to the highly abrasive nature of the rocks. So, drillability and abrasiveness of igneous rocks must form the basis of drilling optimizition design. The problem is, however, that igneous rock abrasiveness testing methods have not yet been formulated. So, in this paper, we describe the development of a rock abrasiveness measuring device used to test the abrasiveness of igneous rock samples with different lithologies. We also examined the relationship between the abrasiveness and their uniaxial compressive strength of igneous rocks, and mineral content. We found that under the conditions of rock sample rotary speed of 8 r/min, WOB of 800 N, and drill bit rotary speed of 198 r/min, the weight loss of grinding standard part of per unit volume broken rock within a certain time can be used as abrasiveness index to distinguish the abrasiveness of igneous rocks with different lithologies. The abrasiveness of igneous rocks shows a good power function relationship between uniaxial compressive strength and equivalent quartz content. The research results show that the abrasiveness prediction model based on the uniaxial compressive strength of igneous rock can predict the igneous rock abrasiveness very well and provide a theoretical basis for optimizing the drilling design for wells in igneous reservoirs.
-
Keywords:
- igneous rock /
- abrasiveness /
- grinding standard part /
- compressive strength /
- prediction model
-
-
表 1 火成岩岩样矿物成分及含量和单轴抗压强度测试结果
Table 1 Test results of mineral composition & content and uniaxial compressive strength of igneous rock samples
岩性 矿物各成分含量,% qe,% σ/MPa 石英 钾长石 斜长石 闪石 辉石 斜长花岗岩 12 25 59 – – 84.00 112 花岗斑岩 17 50 29 – – 84.71 129 石英正长岩 19 51 27 – – 85.86 147 石英二长岩 18 38 41 – – 86.00 138 花岗二长岩 24 36 37 – – 86.57 176 英安岩 36 9 40 11 – 88.21 207 花岗正长岩 31 44 20 – – 85.86 230 角闪辉长岩 18 22 36 10 13 89.27 268 花岗闪长岩 35 9 54 3 – 90.13 275 玄武岩 – 17 55 5 19 – 308 表 2 火成岩研磨性指标与单轴抗压强度关系回归结果
Table 2 Regression results of relationship between compressive strength and abrasiveness of igneous rocks
函数关系 模型 R2 F 线性 ω=0.144σ–6.028 0.944 3 135.504 1 对数 ω=27.244lnσ–120.17 0.901 4 70.133 6 指数 ω=5.78e0.006 4σ 0.961 4 199.476 8 幂 ω=0.031σ1.241 0.963 1 208.851 6 多项式 ω=0.000 4σ2–0.025 5σ+9.712 0.962 9 91.030 9 表 3 火成岩研磨性指标与等效石英含量关系回归结果
Table 3 Regression results of relationship between equivalent quartz content and abrasiveness of igneous rocks
函数关系 模型 R2 F 线性 ω=3.680qe–298.74 0.830 4 34.262 3 对数 ω=320.26lnqe–1 408.7 0.828 5 33.813 3 指数 ω=4×10–6e0.187qe 0.832 7 34.845 0 幂 ω=2×10–29qe15.5 0.834 3 35.234 0 多项式 ω=0.02qe2–138.617 0.832 1 34.690 8 表 4 回归关系式比较
Table 4 Comparison of regression relations
引入参数 关系式 R2 F σ 式(3) 0.963 1 208.851 6 qe 式(4) 0.834 3 35.234 0 qe,σ 式(6) 0.962 7 77.357 9 表 5 研磨性指标预测结果
Table 5 Abrasiveness prediction results of igneous rocks with different lithologies
岩性 单轴抗压
强度/MPa研磨性指标/(mg∙cm–3) 相对误差,% 预测 实测 正长花岗岩 151 15.63 15.24 2.52 斜长花岗岩 118 11.51 11.95 3.80 粉红花岗岩 273 32.60 30.06 7.80 二长花岗岩 197 21.75 23.17 6.55 二长花岗岩 169 17.98 17.45 2.94 -
[1] 王洛,李江海,师永民,等. 全球火山岩油气藏研究的历程与展望[J]. 中国地质, 2015(5): 1610–1620. doi: 10.3969/j.issn.1000-3657.2015.05.028 WANG Luo, LI Jianghai, SHI Yongmin, et al. Review and prospect of global volcanic reservoirs[J]. Geology in China, 2015(5): 1610–1620. doi: 10.3969/j.issn.1000-3657.2015.05.028
[2] 姜洪福,师永民,张玉广,等. 全球火山岩油气资源前景分析[J]. 资源与产业, 2009, 11(3): 20–22. doi: 10.3969/j.issn.1673-2464.2009.03.006 JIANG Hongfu, SHI Yongmin, ZHANG Yuguang, et al. Potential of global volcanics-hosted oil-gas resoruces[J]. Resources & Industries, 2009, 11(3): 20–22. doi: 10.3969/j.issn.1673-2464.2009.03.006
[3] 付茜. 中国火成岩油气勘探开发现状及展望[J]. 石油钻采工艺, 2017, 39(1): 25–32. FU Qian. Status and prospect of igneous oil and gas exploration and development in China[J]. Oil Drilling & Production Technology, 2017, 39(1): 25–32.
[4] 赵洪山,冯光通,唐波,等. 准噶尔盆地火成岩钻井提速难点与技术对策[J]. 石油机械, 2013, 41(3): 21–26. doi: 10.3969/j.issn.1001-4578.2013.03.005 ZHAO Hongshan, FENG Guangtong, TANG Bo, et al. Difficulties in igneous rock drilling in Dzungaria Basin and technological solutions[J]. China Petroleum Machinery, 2013, 41(3): 21–26. doi: 10.3969/j.issn.1001-4578.2013.03.005
[5] 巢贵业. 松南地区火山岩水平井优快钻井技术[J]. 石油钻探技术, 2013, 41(6): 62–67. doi: 10.3969/j.issn.1001-0890.2013.06.012 CHAO Guiye. Ultra-fast drilling technology for horizontal wells in volcanic rocks in Songnan Area[J]. Petroleum Drilling Techniques, 2013, 41(6): 62–67. doi: 10.3969/j.issn.1001-0890.2013.06.012
[6] 杨明合,夏宏南,蒋宏伟,等. 火山岩地层优快钻井技术[J]. 石油钻探技术, 2009, 37(6): 44–47. doi: 10.3969/j.issn.1001-0890.2009.06.010 YANG Minghe, XIA Hongnan, JIANG Hongwei, et al. Optimal and fast drilling technology for volcanic rock formations[J]. Petroleum Drilling Techniques, 2009, 37(6): 44–47. doi: 10.3969/j.issn.1001-0890.2009.06.010
[7] 冯月江. 火成岩油藏钻井完井技术探讨[J]. 石油钻探技术, 1998, 26(4): 40–41. FENG Yuejiang. Discussion on drilling and completion technology of igneous reservoir[J]. Petroleum Drilling Techniques, 1998, 26(4): 40–41.
[8] 马凤清. 哈山3井火成岩地层快速钻井技术[J]. 石油钻探技术, 2014, 42(2): 112–116. MA Fengqing. Rapid drilling technology of igneous formations in Well Hashan 3[J]. Petroleum Drilling Techniques, 2014, 42(2): 112–116.
[9] 王滨,李军,邹德永,等. 强研磨性硬岩PDC 钻头磨损机理及磨损分布规律研究[J]. 特种油气藏, 2018, 25(4): 149–153. WANG Bin, LI Jun, ZOU Deyong, et al. Mechanisms and distribution pattern of abrasions on PDC bits for highly-abrasive hard-rock[J]. Special Oil & Gas Reservoirs, 2018, 25(4): 149–153.
[10] 邹德永,王瑞和. PDC钻头的岩石研磨性试验研究[J]. 石油大学学报(自然科学版), 2003, 27(2): 41–43. ZOU Deyong, WANG Ruihe. Experimental study on rock abrasiveness with PDC bit[J]. Journal of the University of Petroleum, China(Edition of Natural Science), 2003, 27(2): 41–43.
[11] DAHL F, BRULAND A, JAKOBSEN P D, et al. Classifications of properties influencing the drillability of rocks, based on the NTNU/SINTEF test method[J]. Tunnelling and Underground Space Technology, 2012, 28: 150–158. doi: 10.1016/j.tust.2011.10.006
[12] 孔健. 人造金刚石钻进中岩石研磨性的试验研究[J]. 地球科学, 1985, 10(3): 53–63. KONG Jian. Experimental study on the abrasiveness of rock in synthetic diamond drilling[J]. Earth Science, 1985, 10(3): 53–63.
[13] 袁军,邹德永,钟洪娇,等. 适合于石油钻井地层岩石研磨性测定的标准磨损件研制[J]. 中国科技论文, 2016, 11(11): 1249–1253. doi: 10.3969/j.issn.2095-2783.2016.11.011 YUAN Jun, ZOU Deyong, ZHONG Hongjiao, et al. Development of standard wear specimen for determination of rock abrasiveness in petroleum drilling formation[J]. China Sciencepaper, 2016, 11(11): 1249–1253. doi: 10.3969/j.issn.2095-2783.2016.11.011
[14] 赵靖影,邓金根,谢玉洪,等. 通用地层研磨性预测模型的建立及应用[J]. 中国海上油气, 2011, 23(5): 329–334. doi: 10.3969/j.issn.1673-1506.2011.05.011 ZHAO Jingying, DENG Jingen, XIE Yuhong, et al. Establishment and application of a universal prediction model of formation abrasivity[J]. China Offshore Oil and Gas, 2011, 23(5): 329–334. doi: 10.3969/j.issn.1673-1506.2011.05.011
[15] 邢晨. 火成岩研磨性测定方法及预测模型研究[D]. 青岛: 中国石油大学(华东), 2017. XING Chen. Study on the determination method and prediction model of igneous rock abrasiveness[D]. Qingdao: China University of Petroleum(East China), 2017.
-
期刊类型引用(4)
1. 刘明明,宋智勇,马收,魏玉华,庄欢乐. 基于新型粒子群算法的泵送射孔井口压力预测方法研究. 测井技术. 2024(03): 395-401 . 百度学术
2. 唐波,吴雪锋,赵洪山,李泽,肖东. 高温高压下钻井液循环流动摩阻实验研究. 科学技术与工程. 2023(28): 12031-12037 . 百度学术
3. 肖雯. 径向井压裂技术携砂液摩阻影响参数研究. 复杂油气藏. 2019(04): 71-75 . 百度学术
4. 杨浩珑,向祖平,李龙,袁迎中. CO_2泡沫双子表面活性剂清洁压裂液研究与试验. 石油钻探技术. 2018(02): 92-97 . 本站查看
其他类型引用(2)