Study on the Change Law of Annular Outlet Flow Rate in New-Type Dual-Gradient Drilling under Gas Cut Condition
-
摘要:
为了准确掌握气侵条件下新型双梯度钻井环空出口流量的变化规律,基于井筒气液两相流动理论,建立了考虑密度突变的气液两相流模型,分析了气侵条件下环空出口流量的变化,并探讨了不同因素变化对环空出口流量变化率的影响。研究发现:气体前沿到达分离器位置时,环空出口流量变化率明显突增;分离器位于泥线以下时,环空出口流量发生突增的时间要早于隔水管底端见气时间,有利于更早地识别气侵;低密度/高密度钻井液密度差、气侵量、排量、分离器位置、井深和井口回压等因素对环空出口流量变化率的影响程度依次降低。研究结果表明,考虑密度突变的气液两相流模型,可以准确预测气侵条件下新型双梯度钻井环空出口流量的变化情况,并为新型双梯度钻井早期溢流监测提供理论依据。
Abstract:In order to accurately understand the change law of annular flow rate in new dual-gradient drilling under gas cut conditions, a gas-liquid two-phase flow model that considers density mutation has been established according to the theory of gas-liquid two-phase flow in the wellbore. They then analyzed the change of annular outlet flow rate under gas cut condition, as well as the influence of different factors on the change of annular outlet flow rate. The results showed that the change rate of annular outlet flow rate increased abruptly when the gas front reached the separator. Further, when the separator was located below the mud line, an abrupt increase of annular outlet flow rate would occur earlier than that of the gas at the bottom of the riser, which was helpful to the earlier identification of gas influx. Further, the influence degrees of density difference of light/heavy drilling fluids, gas influx, flow rate, separator position, well depth and wellhead back pressure on the change of annular outlet flow rate were reduced in turn. The gas-liquid two-phase flow model that considers the density mutation could accurately predict the change of annular outlet flow rate in the new-type dual-gradient drilling under gas cut condition,and provide a theoretical basis for early overflow monitoring in the new-type dual gradient drilling.
-
Keywords:
- dual-gradient drilling /
- annular outlet flow rate /
- gas cut /
- gas-liquid two-phase /
- flow model
-
-
-
[1] 张功成,屈红军,张凤廉,等. 全球深水油气重大新发现及启示[J]. 石油学报, 2019, 40(1): 1–34, 55. doi: 10.7623/syxb201901001 ZHANG Gongcheng, QU Hongjun, ZHANG Fenglian, et al. Major new discoveries of oil and gas in global deepwaters and enlightenment[J]. Acta Petrolei Sinica, 2019, 40(1): 1–34, 55. doi: 10.7623/syxb201901001
[2] 廖茂林,周英操,苏义脑,等. 深水钻井管柱系统动力学分析与设计方法研究[J]. 石油钻探技术, 2019, 47(2): 56–62. doi: 10.11911/syztjs.2019031 LIAO Maolin, ZHOU Yingcao, SU Yinao, et al. A study of the dynamic analysis and design method of deepwater drilling string systems[J]. Petroleum Drilling Techniques, 2019, 47(2): 56–62. doi: 10.11911/syztjs.2019031
[3] 王超,李军,柳贡慧,等. 钻井开停泵井底波动压力变化特征研究[J]. 石油钻探技术, 2018, 46(4): 47–53. WANG Chao, LI Jun, LIU Gonghui, et al. Study on the fluctuation of bottomhole pressure while starting and stopping the drilling pump[J]. Petroleum Drilling Techniques, 2018, 46(4): 47–53.
[4] 王江帅,李军,柳贡慧,等. 循环钻井过程中井筒温度场新模型研究[J]. 断块油气田, 2018, 25(2): 240–243. WANG Jiangshuai, LI Jun, LIU Gonghui, et al. New model of wellbore temperature field during drilling process[J]. Fault-Block Oil & Gas Field, 2018, 25(2): 240–243.
[5] 吴雪婷,邹韵,陆彦颖,等. 漏失循环条件下井筒温度预测与漏层位置判别[J]. 石油钻探技术, 2019, 47(6): 54–59. doi: 10.11911/syztjs.2019119 WU Xueting, ZOU Yun, LU Yanying, et al. Prediction of wellbore temperature under lost circulation condition and determination of loss zone location[J]. Petroleum Drilling Techniques, 2019, 47(6): 54–59. doi: 10.11911/syztjs.2019119
[6] 高德利,朱旺喜,李军,等. 深水油气工程科学问题与技术瓶颈: 第147期双清论坛学术综述[J]. 中国基础科学, 2016, 18(3): 1–6. doi: 10.3969/j.issn.1009-2412.2016.03.001 GAO Deli, ZHU Wangxi, LI Jun, et al. Scientific problems and technical bottlenecks in deepwater oil & gas engineering: academic review of the 147th Shuangqing Forum[J]. China Basic Science, 2016, 18(3): 1–6. doi: 10.3969/j.issn.1009-2412.2016.03.001
[7] 王江帅,李军,柳贡慧,等. 基于井下分离的深水双梯度钻井参数优化[J]. 石油勘探与开发, 2019, 46(4): 776–781. WANG Jiangshuai, LI Jun, LIU Gonghui, et al. Parameters optimization in deepwater dual-gradient drilling based on downhole separation[J]. Petroleum Exploration and Development, 2019, 46(4): 776–781.
[8] WANG Jiangshuai, LI Jun, LIU Gonghui, et al. Development and application of transient gas-liquid two-phase flow model considering sudden density change[J]. Energy Science and Engineering, 2020, 8(4): 1209–1219. doi: 10.1002/ese3.579
[9] 许玉强,管志川,张会增,等. 深水钻井气侵程度实时定量描述方法[J]. 石油勘探与开发, 2016, 43(2): 292–296. XU Yuqiang, GUAN Zhichuan, ZHANG Huizeng, et al. The quantitative description of gas-cut degree in deepwater drilling[J]. Petroleum Exploration and Development, 2016, 43(2): 292–296.
[10] HE Miao, XU Mingbiao, LI Jun, et al. A new two-phase model to simulate sour gas kicks in MPD operations with water based mud[J]. Journal of Petroleum Science and Engineering, 2017, 159: 331–343. doi: 10.1016/j.petrol.2017.09.024
[11] YANG Hongwei, LI Jun, LIU Gonghui, et al. A transient hydro-thermo-bubble model for gas kick simulation in deep water drilling based on oil-based mud[J]. Applied Thermal Engineering, 2019, 158: 113776. doi: 10.1016/j.applthermaleng.2019.113776
[12] 王江帅,李军,柳贡慧,等. 变压力梯度下钻井环空压力预测[J]. 石油学报, 2020, 41(4): 497–504. WANG Jiangshuai, LI Jun, LIU Gonghui, et al. Prediction of annulus pressure in variable pressure gradients drilling[J]. Acta Petrolei Sinica, 2020, 41(4): 497–504.
[13] ZUBER N, FINDLAY J. Average volumetric concentration in two-phase flow systems[J]. Journal of Heat Transfer, 1965, 87(4): 453–468. doi: 10.1115/1.3689137
[14] 何淼.控压钻井溢流实时解释理论与控制方法研究[D].北京: 中国石油大学(北京), 2016. HE Miao. Influx real time interpretation theory and control method in managed pressure drilling [D]. Beijing: China University of Petroleum (Beijing), 2016.
[15] 李士伦.天然气工程[M].北京: 石油工业出版社, 2008: 35–40. LI Shilun. Natural gas engineering [M]. Beijing: Petroleum Industry Press, 2008: 35–40.
-
期刊类型引用(1)
1. 高凯歌,赵超杰,闫柯乐,靳彦欣,樊朝斌,苗智瑜,刘铭刚,葛鹏飞. 气井钻井四通材料冲蚀行为研究及性能优选. 断块油气田. 2025(01): 165-169 . 百度学术
其他类型引用(0)