Precise Managed Pressure Drilling Technology for Ultra-High Pressure Brine Layer in the Kuqa Piedmont of the Tarim Oilfield
-
摘要:
塔里木油田库车山前巨厚盐膏层普遍发育超高压盐水,且盐膏层中夹杂破裂压力低的泥岩层,导致安全钻井密度窗口窄, 易发生井涌、井漏、井塌和卡钻等井下故障。通过精细描述钻井液循环系统流量变化特征,定量化钻井液出入口流量差与溢流量、漏失量及高密度钻井液弹性变形量间的相互关系,可以实时快速判断溢流和漏失,计算求取地层压力,并将自动控压排水与控压压回相结合,精确控制地层与井底的压力差,有效控制合适的盐水返出量,大幅降低溢流、井漏等井下风险,形成了超高压盐水层微流量精细控压钻井技术。该技术在克深A井和克深B井进行了现场试验,均安全快速钻穿超高压盐水层,大幅提高了机械钻速,缩短了钻井周期,降低了钻井成本。研究与应用表明,超高压盐水层微流量精细控压钻井技术可快速发现溢流和漏失,精确控制地层盐水返出或者钻井液漏入地层,实现可控微溢流或漏失,大幅减少了盐水排放时间,确保了井眼稳定,实现了安全快速钻穿超高压盐水层的目的,为超深井复杂地层高效钻进提供了新的技术手段。
Abstract:Ultra-high pressure brine development (pressure co-efficient of up to 2.65) is common in the thick salt formation of the Kuqa Piedmont in the Tarim Oilfield, and the salt formation contains a mudstone layer with a low fracture pressure gradient, which leads to a narrow drilling safety density window, prone to downhole problems such as spill, lost circulation, collapse, stuck pipe, etc. By precisely describing the flowrate change characteristics of drilling fluid circulation system, and quantifying the correlation among the inlet/outlet flowrate difference of the drilling fluid, the spill volume, leakage volume and the elastic deformation volume of high-density drilling fluid, it is possible to realize the rapid and real-time identification of spill and leakage and calculate the formation pressure. By combining the automatic pressure-controlled drainage and pressure-controlled bull-heading, it is possible to accurately control the difference between the formation pressure and bottomhole pressure, and effectively control the appropriate amount of brine return. In this way, it is possible to significantly reduce the downhole risks of both spill and leakage, forming the managed pressure drilling technology by a fine controllable micro-flowrate in an ultra-high pressure brine layer. The technology has been tested in Well Keshen A and B, and drilled through the ultra-high pressure brine layers safely and quickly, which greatly increases the ROP, shortens the drilling cycle and saves the drilling cost. Research and application showed that the managed pressure drilling technology by fine micro-flowrate control in ultra-high pressure brine layer could quickly detect spill and leakage, accurately control formation brine return or lost circulation of drilling fluid, and achieve a controllable micro-spill or leakage, which can reduce the brine discharge time greatly, ensure the borehole stability, and achieve the purpose of drilling through ultra-high pressure brine layer safely and quickly. The technology has provided a technical means for the efficient drilling of ultra deep wells in complex formations.
-
-
-
[1] 尹达,叶艳,李磊,等. 塔里木山前构造克深7井盐间高压盐水处理技术[J]. 钻井液与完井液, 2012, 29(5): 6–8. doi: 10.3969/j.issn.1001-5620.2012.05.002 YIN Da, YE Yan, LI Lei, et al. High pressure salt water treatment technology of Well Keshen7 in foothill structural zone of Tarim[J]. Drilling Fluid & Completion Fluid, 2012, 29(5): 6–8. doi: 10.3969/j.issn.1001-5620.2012.05.002
[2] 田径.钻遇盐膏层高压盐水的井控技术[D].成都: 西南石油大学, 2012. TIAN Jing. Well control technology of high pressure brine drilling in salt gypsum layer[D]. Chengdu: Southwest Petroleum University, 2012.
[3] 卢俊安,王春生,冯少波,等. 超高压盐水溢流处置技术[J]. 钻采工艺, 2017, 40(5): 5–7. doi: 10.3969/J.ISSN.1006-768X.2017.05.02 LU Jun'an, WANG Chunsheng, FENG Shaobo, et al. Disposal measures for ultra-high-pressure brine overflow[J]. Drilling & Production Technology, 2017, 40(5): 5–7. doi: 10.3969/J.ISSN.1006-768X.2017.05.02
[4] 汪蓬勃. 基于巨厚盐膏层以及碳酸盐储层的钻井技术研究[D].成都: 西南石油大学, 2015. WANG Pengbo. Research on the drilling technique based on the layer of thick salt paste and carbonate reservoir[D]. Chengdu: Southwest Petroleum University, 2015.
[5] 周健,贾红军,刘永旺,等. 库车山前超深超高压盐水层安全钻井技术探索[J]. 钻井液与完井液, 2017, 34(1): 54–59. doi: 10.3969/j.issn.1001-5620.2017.01.010 ZHOU Jian, JIA Hongjun, LIU Yongwang, et al. Research on safe drilling technology for ultra deep ultrahigh pressure saltwater zones in Piedmont Area, Kuche[J]. Drilling Fluid & Completion Fluid, 2017, 34(1): 54–59. doi: 10.3969/j.issn.1001-5620.2017.01.010
[6] 周健.塔里木油田KS9区块含盐地层钻井关键技术研究[D].青岛: 中国石油大学(华东), 2017. ZHOU Jian. Study on key techniques of salt formation drilling on KS9 Block of Tarim Oilfield[D]. Qingdao: China University of Petroleum (East China), 2017.
[7] 梁红军,李军,李卫东,等. 高压盐水层控压放水室内实验研究[J]. 钻采工艺, 2019, 42(2): 21–23. LIANG Hongjun, LI Jun, LI Weidong, et al. Experimental study on controlled pressure discharge of high pressure brine out of formations[J]. Drilling & Production Technology, 2019, 42(2): 21–23.
[8] 董萌.克拉苏构造盐膏层钻井提速措施研究与应用[D].成都: 西南石油大学, 2017. DONG Meng. The research and application of the high quality and high speed drilling of salt layer in Kelasu[D]. Chengdu: Southwest Petroleum University, 2017.
[9] 任保友,刘锋报,徐兴梁,等. 塔里木山前构造克深某区块盐膏层井漏技术处理[J]. 西部探矿工程, 2018, 30(2): 75–78. doi: 10.3969/j.issn.1004-5716.2018.02.027 REN Baoyou, LIU Fengbao, XU Xingliang, et al. Treatment of lost circulation in salt gypsum layer in Keshen Block of Tarim Piedmont Structure[J]. West-China Exploration Engineering, 2018, 30(2): 75–78. doi: 10.3969/j.issn.1004-5716.2018.02.027
[10] 周英操,崔猛,查永进. 控压钻井技术探讨与展望[J]. 石油钻探技术, 2008, 36(4): 1–4. doi: 10.3969/j.issn.1001-0890.2008.04.001 ZHOU Yingcao, CUI Meng, ZHA Yongjin. Discussion and prospect of managed pressure drilling technology[J]. Petroleum Drilling Techniques, 2008, 36(4): 1–4. doi: 10.3969/j.issn.1001-0890.2008.04.001
[11] CHATAR C, IMLER M D. Overcoming a difficult salt drilling environment in the Gulf of Mexico: a case study[R]. SPE 128192, 2010.
[12] 张桂林. 土库曼斯坦亚苏尔哲别油田控压钻井技术[J]. 石油钻探技术, 2010, 38(6): 37–41. doi: 10.3969/j.issn.1001-0890.2010.06.009 ZHANG Guilin. Application of managed pressure drilling technology in Azores Area, Turkmenistan[J]. Petroleum Drilling Techniques, 2010, 38(6): 37–41. doi: 10.3969/j.issn.1001-0890.2010.06.009
[13] CURRY D A, LOURENCO A M, LEDGERWOOD L W, et al. The effect of borehole pressure on the drilling process in salt[R]. SPE 173023, 2015.
[14] 韩烈祥. CQMPD精细控压钻井技术应用与思考[J]. 石油钻采工艺, 2018, 40(5): 559–562. HAN Liexiang. Application and thinking of CQMPD fine pressure controlling drilling technology[J]. Oil Drilling & Production Technology, 2018, 40(5): 559–562.
[15] QASIM Ashraf, ALI Khalid, KHURRAM Luqman, et al. Managed pressure drilling saves multimillion dollar well from abandonment; enabled operator to drill and isolate section to target depth in a challenging plastic salt formation[R]. IPTC 19438, 2019.
[16] 苏勤,邢树宾. 缅甸D区块Yagyi-1x井控压钻井技术[J]. 石油钻探技术, 2011, 39(4): 25–28. doi: 10.3969/j.issn.1001-0890.2011.04.005 SU Qin, XING Shubin. Managed pressure drilling for Well Yagyi-1x in Block D of Myanmar[J]. Petroleum Drilling Techniques, 2011, 39(4): 25–28. doi: 10.3969/j.issn.1001-0890.2011.04.005
[17] 史肖燕,周英操,赵莉萍,等. 精细控压钻井过程中溢流的模拟和控制[J]. 石油机械, 2019, 47(5): 24–30. SHI Xiaoyan, ZHOU Yingcao, ZHAO Liping, et al. Influx simulation and control during managed pressure drilling[J]. China Petroleum Machinery, 2019, 47(5): 24–30.
[18] 周英操,杨雄文,方世良,等. PCDS-Ⅰ精细控压钻井系统研制与现场试验[J]. 石油钻探技术, 2011, 39(4): 7–12. doi: 10.3969/j.issn.1001-0890.2011.04.002 ZHOU Yingcao, YANG Xiongwen, FANG Shiliang, et al. Development and field test of PCDS-Ⅰ precise managed pressure drilling system[J]. Petroleum Drilling Techniques, 2011, 39(4): 7–12. doi: 10.3969/j.issn.1001-0890.2011.04.002
[19] 王江帅,李军,任美鹏,等. 控压钻井环空多相流控压响应时间研究[J]. 石油机械, 2019, 47(5): 61–65. WANG Jiangshuai, LI Jun, REN Meipeng, et al. Study on response time of multi-phase annular flow in MPD[J]. China Petroleum Machinery, 2019, 47(5): 61–65.
[20] 周英操,刘伟. PCDS精细控压钻井技术新进展[J]. 石油钻探技术, 2019, 47(3): 68–74. ZHOU Yingcao, LIU Wei. New progress on PCDS precise pressure management drilling technology[J]. Petroleum Drilling Techniques, 2019, 47(3): 68–74.
[21] 周英操,杨雄文,方世良,等. 国产精细控压钻井系统在蓬莱9井试验与效果分析[J]. 石油钻采工艺, 2011, 33(6): 19–22. doi: 10.3969/j.issn.1000-7393.2011.06.005 ZHOU Yingcao, YANG Xiongwen, FANG Shiliang, et al. Field test and analysis on effect of auto-controlled pressure drilling system in the Well Penglai 9[J]. Oil Drilling & Production Technology, 2011, 33(6): 19–22. doi: 10.3969/j.issn.1000-7393.2011.06.005
[22] 刘伟,周英操,段永贤,等. 国产精细控压钻井技术与装备的研发及应用效果评价[J]. 石油钻采工艺, 2014, 36(4): 34–37. LIU Wei, ZHOU Yingcao, DUAN Yongxian, et al. Development of domestic fine controlled pressure drilling technology and equipment and evaluation on their application effect[J]. Oil Drilling & Production Technology, 2014, 36(4): 34–37.
[23] 周英操.精细控压钻井技术及其应用[M].北京: 石油工业出版社, 2018. ZHOU Yingcao. Precise pressure management drilling technology and its application[M]. Beijing: Petroleum Industry Press, 2018.
-
期刊类型引用(19)
1. 王川,陈秋帆,夏勇. 海底泥浆举升钻井系统钻遇天然气水合物时的动态风险分析. 安全与环境学报. 2024(02): 479-487 . 百度学术
2. 翟诚,吴迪,秦冬冬. 天然气水合物注热分解诱发储层变形破坏的正交数值模拟研究. 特种油气藏. 2024(02): 112-119 . 百度学术
3. 刘芳,冯馨,孙皓宇,张旭辉. 水合物分解中深水基础抗拔性能模型试验研究. 防灾减灾工程学报. 2023(02): 359-365 . 百度学术
4. 贺保卫,马志宇,崔海朋,杜鹏. 基于Unity 3D的可燃冰开采环境监测模拟系统设计. 计算机应用与软件. 2023(08): 121-125+154 . 百度学术
5. 吴艳辉,代锐,张磊,朱志潜,高禹,刘楷,徐鹏,张雨. 深水井筒海水聚合物钻井液水合物生成抑制与堵塞物处理方法. 钻井液与完井液. 2023(04): 415-422 . 百度学术
6. 赵凯,李润森,冯永存,高伟,张振伟,窦亮彬,毕刚. 非均匀地应力场下水合物储层水平井井周塑性区分布. 中南大学学报(自然科学版). 2022(03): 952-962 . 百度学术
7. 王磊,杨进,李莅临,胡志强,柯珂,臧艳彬,孙挺. 深水含水合物地层钻井井口稳定性研究. 岩土工程学报. 2022(12): 2312-2318 . 百度学术
8. 王志刚,李小洋,张永彬,尹浩,胡晨,梁金强,黄伟. 海域非成岩天然气水合物储层改造方法分析. 钻探工程. 2021(06): 32-38 . 百度学术
9. 马永乐,张勇,刘晓栋,侯岳,杨金龙,宋本岭,刘涛,李荔. 海域天然气水合物低温抑制性钻井液体系. 钻井液与完井液. 2021(05): 544-551+559 . 百度学术
10. 王偲,谢文卫,张伟,陈靓,陈浩文. RMR技术在海域天然气水合物钻探中的适应性分析. 探矿工程(岩土钻掘工程). 2020(02): 17-23 . 百度学术
11. 史静怡,樊建春,武胜男,李磊. 深水井筒天然气水合物形成预测及风险评价. 油气储运. 2020(09): 988-996 . 百度学术
12. 李莅临,杨进,路保平,柯珂,王磊,陈柯锦. 深水水合物试采过程中地层沉降及井口稳定性研究. 石油钻探技术. 2020(05): 61-68 . 本站查看
13. 李子丰,韩杰. 海底天然气水合物开采的环境安全性探讨. 石油钻探技术. 2019(03): 127-132 . 本站查看
14. 李庆超,程远方,邵长春. 允许适度坍塌的水合物储层最低钻井液密度. 断块油气田. 2019(05): 657-661 . 百度学术
15. 牛洪波,于政廉,孙菁,徐加放. 天然气水合物动力学抑制剂与水分子相互作用研究. 石油钻探技术. 2019(04): 29-34 . 本站查看
16. 迟咏梅,徐松杰,曹玉廷,董坚. 新型两亲性聚酰胺的合成及性质. 应用化学. 2017(03): 269-275 . 百度学术
17. 庞维新,李清平,程艳,王炳明. 水合物堵塞治理工具和方法研究. 石油机械. 2016(03): 68-72 . 百度学术
18. 光新军,王敏生. 海洋天然气水合物试采关键技术. 石油钻探技术. 2016(05): 45-51 . 本站查看
19. 孙小辉,孙宝江,王志远,王金堂. 超临界CO_2钻井井筒水合物形成区域预测. 石油钻探技术. 2015(06): 13-19 . 本站查看
其他类型引用(13)