Abstract:
Using an electric explosion shock wave to enhance permeability and remove plugging have become a hot topic because of the possibility for better control and also better environmental protection. Conventional plugging removal techniques for oil and water wells present problems that include complicated processes, high cost and serious environmental pollution. For that reason, permeability enhancement and plugging removal techniques from electric explosion shock wave have become a research hot spot for the advantages of good plugging removal and permeability enhancement effect, controllable energy, environmental protection, etc. By analyzing the mechanism of permeability enhancement and plugging removal from electric explosion shock wave, an experimental device for the influence factors evaluation was developed. The effects of capacitance, charging voltage and wire diameter on the peak pressure of electric explosion shock wave were tested, and the electric explosion shock wave fracture-generating and plugging removal were evaluated under the simulated in-situ conditions of the reservoir. The experimental results show that the shock wave peak pressure increases linearly with charging voltage, and wire diameter has little effect on the shock wave peak pressure. There is an optimal capacitance that maximizes the shock wave peak pressure, which verifies that the electric explosion shock wave can trigger fracture propagation in reservoir and generate new microcracks, hence enhancing permeability enhancement and facilitating plugging removal. The research results provide a baseline for promoting the research and field test permeability enhancement and plugging removal from electric explosion shock wave.