电爆冲击波增渗解堵技术试验研究

周鹏, 杜孝友, 曹砚锋, 于继飞, 江海畏, 薛启龙

周鹏, 杜孝友, 曹砚锋, 于继飞, 江海畏, 薛启龙. 电爆冲击波增渗解堵技术试验研究[J]. 石油钻探技术, 2020, 48(2): 98-103. DOI: 10.11911/syztjs.2020033
引用本文: 周鹏, 杜孝友, 曹砚锋, 于继飞, 江海畏, 薛启龙. 电爆冲击波增渗解堵技术试验研究[J]. 石油钻探技术, 2020, 48(2): 98-103. DOI: 10.11911/syztjs.2020033
ZHOU Peng, DU Xiaoyou, CAO Yanfeng, YU Jifei, JIANG Haiwei, XUE Qilong. Experimental Research on Permeability Enhancement and Plug Removal by Means of an Electric Explosion Shock Wave[J]. Petroleum Drilling Techniques, 2020, 48(2): 98-103. DOI: 10.11911/syztjs.2020033
Citation: ZHOU Peng, DU Xiaoyou, CAO Yanfeng, YU Jifei, JIANG Haiwei, XUE Qilong. Experimental Research on Permeability Enhancement and Plug Removal by Means of an Electric Explosion Shock Wave[J]. Petroleum Drilling Techniques, 2020, 48(2): 98-103. DOI: 10.11911/syztjs.2020033

电爆冲击波增渗解堵技术试验研究

基金项目: 海洋石油高效开发国家重点实验室开放基金课题“电爆冲击波解堵技术适应性研究”及国家科技重大专项课题“海上稠油油田高效开发钻采技术”(2016ZX05025-002)”联合资助
详细信息
    作者简介:

    周鹏(1990—),男,江苏苏州人,2018年获中国地质大学(北京)地质工程专业硕士学位,主要从事电爆冲击波解堵设备的研发工作。E-mail:zhoupeng@163.com

    通讯作者:

    薛启龙,E-mail:xql@cugb.edu.cn

  • 中图分类号: TE358

Experimental Research on Permeability Enhancement and Plug Removal by Means of an Electric Explosion Shock Wave

  • 摘要:

    常规油水井解堵技术存在工艺复杂、成本高和环境污染严重等问题,电爆冲击波增渗解堵技术因具有解堵增渗效果好、能量可控和环保等优势而成为研究热点。在分析电爆冲击波增渗解堵机理的基础上,研制了电爆冲击波试验装置,进行了电容、充电电压及金属丝直径对电爆冲击波压力峰值的影响试验,并进行了模拟地层压力环境下的电爆冲击波造缝及解堵效果评价试验。结果表明,冲击波压力峰值随着充电电压增大呈线性增大,金属丝直径对冲击波压力峰值影响不大,存在一个使冲击波压力峰值最大的最优电容,验证了电爆冲击波可以扩展储层岩石的裂缝并产生新的微裂缝,而且能达到增渗解堵的效果。研究结果为推动电爆冲击波增渗解堵技术研究及现场试验奠定了基础。

    Abstract:

    Using an electric explosion shock wave to enhance permeability and remove plugging have become a hot topic because of the possibility for better control and also better environmental protection. Conventional plugging removal techniques for oil and water wells present problems that include complicated processes, high cost and serious environmental pollution. For that reason, permeability enhancement and plugging removal techniques from electric explosion shock wave have become a research hot spot for the advantages of good plugging removal and permeability enhancement effect, controllable energy, environmental protection, etc. By analyzing the mechanism of permeability enhancement and plugging removal from electric explosion shock wave, an experimental device for the influence factors evaluation was developed. The effects of capacitance, charging voltage and wire diameter on the peak pressure of electric explosion shock wave were tested, and the electric explosion shock wave fracture-generating and plugging removal were evaluated under the simulated in-situ conditions of the reservoir. The experimental results show that the shock wave peak pressure increases linearly with charging voltage, and wire diameter has little effect on the shock wave peak pressure. There is an optimal capacitance that maximizes the shock wave peak pressure, which verifies that the electric explosion shock wave can trigger fracture propagation in reservoir and generate new microcracks, hence enhancing permeability enhancement and facilitating plugging removal. The research results provide a baseline for promoting the research and field test permeability enhancement and plugging removal from electric explosion shock wave.

  • 图  1   井下电爆冲击波解堵技术基本原理及试验装置

    Figure  1.   Basic principle of permeability enhancement and plugging removal technology from downhole electric explosion shock wave

    图  2   电爆冲击波金属丝放电电路

    Figure  2.   Electric explosion shock wave metal wire discharge circuit

    图  3   冲击波压力影响因素试验装置基本原理

    Figure  3.   Basic principle of the shock wave pressure influencing factors test device

    图  4   冲击波压力峰值随充电电压的变化规律

    Figure  4.   Variation laws of shock wave peak pressure with charging voltage

    图  5   冲击波压力峰值随金属丝直径的变化规律

    Figure  5.   Variation laws of shock wave peak pressure with wire diameter

    图  6   冲击波压力峰值随电容的变化规律

    Figure  6.   Variation laws of shock wave peak pressure with capacitance

    图  7   电爆冲击波对C30混凝土试样造缝试验结果

    Figure  7.   Fracture-generating results of electric explosion shock wave on C30 concrete sample

    图  8   电爆冲击波解堵试验装置示意

    1.压力传感器;2.放电电极;3.电爆压力罐;4.围压传感器;5.压力控制阀1;6.流量计量装置;7.储液箱;8. 注流泵;9.围压加载阀;10.压力控制阀2;11.流入流量控制阀;12.供液压力罐;13.轴压传感器1;14.轴压传感器2;15.测试岩心

    Figure  8.   Schematic of the electric explosion shock wave plugging removal test device

    图  9   冲击波作用前后渗透流量随时间变化曲线

    Figure  9.   Curves of seepage flow vs. time pre/post-shock wave action

  • [1] 刘海庆,姚传进,蒋宝云,等. 低渗高凝油藏堵塞机理及解堵增产技术研究[J]. 特种油气藏, 2010, 17(6): 103–106. doi: 10.3969/j.issn.1006-6535.2010.06.030

    LIU Haiqing, YAO Chuanjin, JIANG Baoyun, et al. Study on plugging mechanism and plugging removal technique for low permeability and high pour point oil reservoir[J]. Special Oil & Gas Reservoirs, 2010, 17(6): 103–106. doi: 10.3969/j.issn.1006-6535.2010.06.030

    [2] 陶磊,李松岩,程时清. 稠油油藏水平井泡沫酸解堵技术[J]. 石油钻探技术, 2015, 43(6): 76–80.

    TAO Lei, LI Songyan, CHENG Shiqing. Foamed acid plug-removal technique for horizontal wells in heavy oil reservoirs[J]. Petroleum Drilling Techniques, 2015, 43(6): 76–80.

    [3] 刘永山,肖志明,杨谨敏,等. 老君庙油田浅井低温油层复合解堵技术研究与应用[J]. 石油钻采工艺, 2001, 23(3): 58–60. doi: 10.3969/j.issn.1000-7393.2001.03.017

    LIU Yongshan, XIAO Zhiming, YANG Jinmin, et al. Composite plug remove technology in shallow and low temperature formation in Yumen Oilfield[J]. Oil Drilling & Production Technology, 2001, 23(3): 58–60. doi: 10.3969/j.issn.1000-7393.2001.03.017

    [4] 左伟芹,李雪莲,卢义玉,等. 旋转射流联合沉砂筒解堵工艺关键参数研究[J]. 石油钻探技术, 2014, 42(6): 92–96.

    ZUO Weiqin, LI Xuelian, LU Yiyu, et al. Key parameters of removing blockage with rotating jets and sand-tubes[J]. Petroleum Drilling Techniques, 2014, 42(6): 92–96.

    [5] 李燕,豆宁辉,姚二冬. 哈萨克K油田油井堵塞物分析及解堵技术研究[J]. 钻井液与完井液, 2019, 36(3): 391–396. doi: 10.3969/j.issn.1001-5620.2019.03.022

    LI Yan, DOU Ninghui, YAO Erdong. Analysis of oil well blockage in K Oilfield in Kazakhstan and blockage removal techniques[J]. Drilling Fluid & Completion Fluid, 2019, 36(3): 391–396. doi: 10.3969/j.issn.1001-5620.2019.03.022

    [6] 朱继东,张建国,石爱霞,等. 声波解堵综合配套技术研究[J]. 石油钻探技术, 2006, 34(1): 59–61. doi: 10.3969/j.issn.1001-0890.2006.01.017

    ZHU Jidong, ZHANG Jianguo, SHI Aixia, et al. Comprehensive supporting technology for plug removal with sonic wave[J]. Petroleum Drilling Techniques, 2006, 34(1): 59–61. doi: 10.3969/j.issn.1001-0890.2006.01.017

    [7] 杨乾隆,李立标,陶思羽,等. 注水井不动管柱螯合酸脉冲式注入酸化增注技术[J]. 石油钻探技术, 2018, 46(5): 90–94.

    YANG Qianlong, LI Libiao, TAO Siyu, et al. Chelate acid pulse injection and acidizing stimulation technology for immobilized injecting well string[J]. Petroleum Drilling Techniques, 2018, 46(5): 90–94.

    [8] 张永民,邱爱慈,周海滨,等. 面向化石能源开发的电爆炸冲击波技术研究进展[J]. 高电压技术, 2016, 42(4): 1009–1017.

    ZHANG Yongmin, QIU Aici, ZHOU Haibin, et al. Research progress in electrical explosion shockwave technology for developing fossil energy[J]. High Voltage Engineering, 2016, 42(4): 1009–1017.

    [9] 隋义勇,张永民,李加强,等. 脉冲冲击波有效作用距离影响因素模拟分析[J]. 中国石油大学学报(自然科学版), 2016, 40(5): 118–122.

    SUI Yiyong, ZHANG Yongmin, LI Jiaqiang, et al. Numerical simulation study on parameters impacting effective influence distance of pulse shock waves for well stimulation[J]. Journal of China University of Petroleum(Edition of Natural Science Edition), 2016, 40(5): 118–122.

    [10] 孙冰.液相放电等离子体及其应用[M].北京: 科学出版社, 2013: 8.

    SUN Bing. Liquid-phase discharge plasma and its application[M]. Beijing: Science Press, 2013: 8.

    [11] 张金龙,郭先敏,蔡西茂,等. 等离子通道钻井技术[J]. 石油钻探技术, 2013, 41(4): 64–68. doi: 10.3969/j.issn.1001-0890.2013.04.014

    ZHANG Jinlong, GUO Xianmin, CAI Ximao, et al. Plasma channel drilling technology[J]. Petroleum Drilling Techniques, 2013, 41(4): 64–68. doi: 10.3969/j.issn.1001-0890.2013.04.014

    [12]

    JOMNI F, AITKEN F, DENAT A. Experimental investigation of transient pressure waves produced in dielectric liquids[J]. Journal of the Acoustical Society of America, 2000, 107(3): 1203–1211. doi: 10.1121/1.428409

    [13] 张春喜.水中丝爆引发的推进效应[D].哈尔滨: 哈尔滨理工大学, 2005.

    ZHANG Chunxi. The propulsion effect caused by exploding wire in water[D]. Harbin: Harbin University of Science and Technology, 2005.

    [14]

    MAURELl O, REESS T, MATALLAH M, et al. Electrohydraulic shock wave generation as a means to increase intrinsic permeability of mortar[J]. Cement and Concrete Research, 2010, 40(12): 1631–1638. doi: 10.1016/j.cemconres.2010.07.005

    [15] 李恒乐,秦勇,张永民,等. 重复脉冲强冲击波对肥煤孔隙结构影响的实验研究[J]. 煤炭学报, 2015, 40(4): 915–921.

    LI Hengle, QIN Yong, ZHANG Yongmin, et al. Experimental study on the effect of strong repetitive pulse shockwave on the pore structure of fat coal[J]. Journal of China Coal Society, 2015, 40(4): 915–921.

    [16] 周晓亭,秦勇,李恒乐,等. 电脉冲应力波作用下煤体微裂隙形成与发展过程[J]. 煤炭科学技术, 2015, 43(2): 127–130.

    ZHOU Xiaoting, QIN Yong, LI Hengle, et al. Formation and development of coal micro-fractures under stress wave induced by electrical impulses[J]. Coal Science and Technology, 2015, 43(2): 127–130.

  • 期刊类型引用(7)

    1. 高继开,姜涵钧,王秀龙,张凤鹏,彭建宇. 基于金属丝电爆炸的岩石爆破教学实验平台设计及应用. 实验技术与管理. 2024(11): 146-152 . 百度学术
    2. 孟向丽,杨淼,黄利平,刘春祥,李旭光. 油井筛管堵塞识别和治理方法. 石油工业技术监督. 2022(04): 7-10 . 百度学术
    3. 赵树彬,张命俊,路远涛,汤俊萍,汪锋,朱立江,郑永学. 可控冲击波增产技术在大庆油田的应用. 石油管材与仪器. 2022(05): 76-80 . 百度学术
    4. 阎洪涛,徐文江,于继飞,姜维东,陈欢. 海上疏松砂岩油田注水压力优化方法研究. 中国海上油气. 2021(02): 131-135 . 百度学术
    5. 王巧智,苏延辉,江安,郑春峰,高波,张云飞. 可控冲击波增渗解堵技术实验研究. 天然气与石油. 2021(02): 68-74 . 百度学术
    6. 赵景辉,杨万有,郑春峰,李昂,沈琼. 可控冲击波作用下的油井产能模型研究. 重庆科技学院学报(自然科学版). 2021(03): 15-19+48 . 百度学术
    7. 江海畏,薛启龙. 电爆冲击波对储层致裂效果影响因素的数值模拟研究. 探矿工程(岩土钻掘工程). 2020(11): 70-76 . 百度学术

    其他类型引用(1)

图(9)
计量
  • 文章访问数:  1385
  • HTML全文浏览量:  460
  • PDF下载量:  60
  • 被引次数: 8
出版历程
  • 收稿日期:  2019-12-22
  • 修回日期:  2020-02-03
  • 网络出版日期:  2020-03-04
  • 刊出日期:  2020-02-29

目录

    /

    返回文章
    返回