Shale Oil Horizontal Drilling Technology with Super-Long Horizontal Laterals in the Longdong Region of the Changqing Oilfield
-
摘要:
长庆油田陇东地区页岩油超长水平段水平井钻井过程中存在井眼轨迹控制困难、机械钻速低、水平段堵漏难度大、井壁易失稳和完井套管下入困难等技术难题,为此,进行了井眼轨道设计及井眼轨迹控制技术优化,优选旋转导向钻具组合,应用高性能水基钻井液和套管漂浮下入技术,根据漏层特点和漏失速度采取不同的堵漏技术措施,形成了页岩油超长水平段水平井钻井技术。该技术在陇东地区华H50–7井进行了应用,顺利完成长度4 088.00 m的超长水平段钻进,创国内陆上油气井最长水平段纪录,表明该钻井技术可以满足陇东地区页岩油高效开发的需求,也为国内其他地区超长水平段水平井钻井提供了借鉴。
Abstract:In order to solve technical problems such as the difficult control of well trajectory, low ROP, plugging difficulties in the horizontal section, sidewall instability and difficulties in running completion casing in super-long horizontal sections in shale oil in the Longdong region of the Changqing Oilfield, a shale oil horizontal drilling technology with super-long horizontal section has been formed by means of the optimization and controlling of well trajectory, the selection of rotary-steerable BHA, and the application of high-performance WBM and casing floatation running technology according to the characteristics of thief zone and leakoff rate as well as various plugging measures. This technology was successfully applied for drilling the horizontal Well H50-7 with super-long horizontal section of 4,088.00 m in Longdong Region of Changqing Oilfield, which indicated that the technology could solve the technical difficulties of horizontal wells with a super-long horizontal section, to provide technical support for shale oil development in this region
-
与钻井液钻井相比,气体钻井具有机械钻速高、钻头寿命长、储层保护和防漏失效果好等优点[1-3]。但是,气体钻井存在2个瓶颈问题:直井易斜和下套管困难[4-6]。气体钻井中井斜控制难度大,与地层不均质、底部钻具组合(BHA)振动剧烈和井下情况复杂(如地层出水)等因素有关[7-11]。对此,目前公认的比较有效的方法是用空气锤进行钻进,不但机械钻速快,而且在砂岩、泥页岩和碳酸盐岩地层中均有很好的井斜控制效果。但在塔里木油田山前巨厚砾石层中采用空气锤钻进,不但井斜控制难度很大,后续下套管作业也十分困难,主要表现为井筒规则性很差。
现场实践表明,采用带预弯结构的钟摆BHA控斜效果较好,套管下入也很顺利[12-13]。目前,基于预弯钟摆BHA的控斜方法已在塔里木油田应用6口井,均取得了成功。但现有BHA受力模型都假设井筒光滑,没有考虑井筒的不规则性[14-17],因此不适合用其分析巨厚砾石层气体钻井井斜机理。为此,笔者从BHA与不规则井筒相互作用的角度出发,建立了有限元力学模型,分析了井筒不规则性对井斜的影响,并以塔里木油田山前地区钻遇巨厚砾石层的某气体钻井为例进行了实例分析,验证了相关结论的可靠性和准确性。
1. BHA与井筒相互作用模型
1.1 BHA与不规则井筒相互作用物理模型
图1(a)所示为塔里木油田山前地区巨厚砾石层采用空气锤钻井的一口典型井的实际井筒特征。可以看出,其井筒存在严重的不规则、不光滑现象。据此,建立了BHA与不规则井筒相互作用的物理模型,如图1(b)所示。
由图1可知,BHA会受到不规则井筒的作用。在规则井筒中,BHA受重力作用的同时得到下井壁的“连续”支撑作用,可认为“BHA躺在下井壁上”;但在不规则井筒中,下井壁的不规则“凸起”会形成附加支点,改变BHA的受力特征,减小钻头上的降斜力,甚至可能在钻头上形成增斜力。
1.2 钻柱井壁摩擦接触模型
在BHA与不规则井筒相互作用模型的基础上,建立了如图2所示的钻柱井壁摩擦接触模型。设该模型中:采用笛卡尔直角坐标系
O−x−y−z ,z轴与井眼轴线重合,在井眼中心建立局部柱坐标系o−t−n−z ;Ω1代表钻柱,Ω2代表井壁,S(m) 代表力学边界(m =1,2分别表示2个接触体);l表示接触体增量步起始时刻的间隙大小,l为负表示过盈。采用罚函数法计算分析摩擦接触问题。在每一个时间步检查各从节点是否穿透主面,如有穿透,则在该从节点与被穿透主面间引入界面接触力,其大小与穿透深度、主面的刚度成正比。用
pc={pT,pN}T 表示接触面上的力,用o−t−n−z 表示接触面的局部坐标系,则接触状态的分离、粘结和滑动3类特征依次表示如下[18]:u(1)N−u(2)N+l>0pN=pT=0 (1) {u(1)N−u(2)N+l=0|u(1)T−u(2)T|=0pN=−αN(u(2)N−u(1)N−l)pT=−αT(u(2)T−u(1)T) (2) {u(1)N−u(2)N+l=0|u(1)T−u(2)T|>0pN=−αN(u(2)N−u(1)N−l)pT=−μf|pN|sign(u(2)T−u(1)T) (3) 式中:
u(m)N ,u(m)T 分别为接触点法向增量位移和切向增量位移,m;pN, pT分别为接触面上的法向力(以压为正)和切向力,N;μf为滑动摩擦系数;αN,αT分别为法向罚参数和切向罚参数。1.3 BHA与井筒相互作用有限元计算模型
以单稳定器钟摆钻具组合为例,确定了4种工况:工况1,井筒规则,不弯曲;工况2,井筒有一定程度的弯曲,钻铤在特定位置与井筒相接触(即形成附加支点),但钻铤未发生变形;工况3,井筒有较大程度的弯曲,钻铤在特定位置与井筒相接触,且由于附加支点的作用钻铤发生了弯曲变形;工况4,井筒的不规则性比工况3更为严重。取钻头(空气锤钎头)外径为431.8 mm,钻铤外径为228.6 mm,钻铤内径为71.4 mm,扶正器外径为428.0 mm,扶正器距钻头27 m,井眼直径为431.8 mm,井斜角为5°,并假定BHA与井筒的摩擦系数为0.2,建立了BHA与井筒相互作用有限元计算模型,如图3所示。
2. 井筒不规则程度对钻头侧向力的影响
采用显式算法模拟BHA与井筒间的相互作用机制,计算分析了井筒不同规则程度对钻头侧向力的影响。该分析包括2个计算分析步:1)对BHA施加重力作用;2)在钻头处施加钻压。
在管柱自重和50 kN钻压作用下(空气密度为1.29 kg/m3),工况1—4下钻头对井筒的作用力见表1(负为降斜力,正为增斜力)。
表 1 钻头对井筒的作用力Table 1. Force of the bit on the wellbore工况 x方向作用力/N y方向作用力/N z方向作用力/N 1 –1 708.50 –17.80 –150.50 2 –998.30 –3.30 –87.70 3 –0.10 0.01 0.01 4 7 435.70 56.30 595.50 由表1可知,主要的作用力为x向作用力,即侧向力。对比发现:工况1条件下,由于钟摆效应,钻头降斜力较大,此时钻具组合具有较好的降斜效果;工况2条件下,井筒的不规则性使得其在特定位置形成附加支点,减小了钟摆的摆距,使钻头处的降斜力大幅减小;工况3条件下,不规则井筒使钻柱发生一定变形,进一步减小了BHA的降斜能力;工况4条件下,严重不规则的井筒使钻柱发生较大变形,使钻头处产生较大的增斜力。由此可知,井筒越不规则,钟摆BHA降斜能力越弱,甚至可能变为增斜钻具组合。
图4所示为用矢量图表示的不同工况条件下钻头处的侧向力特征。
由图4可知,井筒的规则程度对钻头侧向力影响很大,在严重不规则井筒中,钻头处会产生增斜力,不利于控制井斜。因此,采用气体钻井钻进含砾岩层等复杂地层时,应尽可能提高井筒的规则性,以更好地控制井斜。
3. 实例分析
以塔里木油田山前地区钻遇巨厚砾石层的某井为例,其三开2 505.00~2 926.00 m井段采用空气锤钻井,井斜角从0.71º 增至4.48º,增幅很大;起钻通井后,2 926.00~3 502.00 m井段采用带预弯结构的钟摆BHA控斜,纯钻时间120.42 h,钻压小于20 kN,转速60 r/min,平均扭矩约4.5 kN·m,且波动幅度很小,井斜角由最大5.20°减至0.63°(3 404.00 m处),取得了很好的降斜效果。该井上述井段在钻进中的井斜角随井深的变化情况如图5所示[12]。
为分析巨厚砾石层气体钻井的井筒特征,利用测井仪器对井径进行了测量。利用三次样条函数对所测井径数据进行处理,可得如图6所示的重构井筒[13]。图6(a)所示为2 700.00~2 760.00 m井段的井筒特征,该井段采用空气锤钻进,所用空气锤钻头直径为431.8 mm。由图6(a)可知,该井段的井筒特征随井深的变化情况非常复杂,除椭圆形状十分明显外(长轴的长度508.0 mm,短轴的长度431.8 mm),其上、下截面形状之间的变化差异也很大,存在严重的不规则和不光滑现象。图6(b)所示为3 140.00~3 200.00 m井段的井筒特征,该井段采用预弯钟摆BHA控斜钻进。由图6(b)可知,该井段的井筒特征相对规则,椭圆度较小。结合图5中井斜数据可知,该井段的井斜角从3.29º减小至1.79º,控制效果显著。
由以上分析可知,空气锤钻进井段控斜效果不好,而预弯钟摆BHA钻进井段井斜角减小幅度大,控斜效果显著。这与本文模型分析所得结论相一致:井筒的不规则性增加了井斜控制难度,选择控斜方法时必须考虑井筒规则性对井斜控制效果的影响,并设法提高井筒的规则性。实践表明,预弯钟摆BHA控斜效果好,其中一个重要原因是其可以在一定程度上改变井眼形状,提高井壁的光滑度。
本文BHA受力分析结果与塔里木油田多口井的现场实测数据都能很好地吻合,证明建立的巨厚砾石层气体钻井条件下的BHA与井筒相互作用有限元模型可靠、准确。
4. 结 论
1)不规则井筒易形成附加支点,缩短钟摆钻具组合的摆距,减小钻头上的降斜力。严重不规则井筒可使BHA发生弯曲变形,改变BHA的受力特征,大幅度减小钻头上的降斜力甚至使钻头侧向力成为增斜力。
2)井筒规则程度对BHA的三维受力特征有较大影响,BHA力学分析应考虑井筒不规则性的影响。在含砾岩层等易形成不规则井筒的气体钻井中,选择钻井工具时应充分考虑所钻井筒的规则性。
3)塔里木油田山前地区巨厚砾石层气体钻井实践表明,预弯钟摆BHA可有效改善井眼截面形状,提高井筒的规则性,有利于控制井斜。
-
表 1 水平段不同工况下的扭矩、轴向拉力和钻具屈曲情况
Table 1 Torque, axial tension and buckling of drilling tool under different operation conditions in horizontal section
工况 大钩载荷/kN 地面扭矩/(kN·m) 中和点距钻头距离/m 中和点井深/m 摩阻/kN 钻柱伸长/m 最大侧向力/kN 起钻 1 059.00 0 0 6 215.96 251.80 2.97 133.30 下钻 569.70 0 4 708.87 1 507.09 238.80 –0.17 123.70 滑动钻进 529.10 0 4 854.67 1 361.29 246.60 –0.58 126.90 旋转钻进 756.40 21.31 4 267.60 1 948.36 0 0.83 126.60 表 2 ϕ311.1 mm斜井段钻井技术指标
Table 2 Drilling technical indexes of ϕ311.1 mm deviated section
钻头型号 钻进井段/m 进尺/m 机械钻速/
(m·h–1)ES1656/S323 291.00~1667.00 1 376.00 13.36 EHS1617Q9混合 1 667.00~2 053.00 386.00 5.51 SH533混合 2 053.00~2 293.00 240.00 6.00 表 3 水平段水基钻井液的性能
Table 3 Performance of water-based mud in horizontal section
井段/m 漏斗黏度/s 密度/(kg·L–1) API滤失量/mL 动切力/Pa 动塑比 ϕ6/ϕ3 低剪切速率切力/Pa 活度 2 293.00~3 678.00 52~55 1.25~1.30 3 7~8 0.5~0.6 5/4 3 0.71 3 678.00~4 900.00 55~60 1.30~1.33 3 9~10 0.5~0.6 7/6 5 0.69 4 900.00~5 642.00 47~52 1.23~1.24 4 5~6 0.4~0.5 4/3 2 0.73 5 642.00~6 266.00 55~62 1.23~1.24 2 10~12 0.5~0.6 9/8 7 0.69 -
[1] 付金华,李士祥,刘显阳. 鄂尔多斯盆地石油勘探地质理论与实践[J]. 天然气地球科学, 2013, 24(6): 1091–1101. FU Jinhua, LI Shixiang, LIU Xianyang. Oil explore geological theory and application in the Ordos Basin[J]. Natural Gas Geoscience, 2013, 24(6): 1091–1101.
[2] 郭元恒,何世明,刘忠飞,等. 长水平段水平井钻井技术难点分析及对策[J]. 石油钻采工艺, 2013, 35(1): 14–81. GUO Yuanheng, HE Shiming, LIU Zhongfei, et al. Difficulties and countermeasures for drilling long lateral-section horizontal wells[J]. Oil Drilling & Production Technology, 2013, 35(1): 14–81.
[3] 王建龙,齐昌利,柳鹤,等. 沧东凹陷致密油气藏水平井钻井关键技术[J]. 石油钻探技术, 2019, 47(5): 11–16. WANG Jianlong, QI Changli, LIU He, et al. Key technologies for drilling horizontal wells in tight oil and gas reservoirs in the Cangdong Sag[J]. Petroleum Drilling Techniques, 2019, 47(5): 11–16.
[4] 侯杰,刘永贵,李海. 高性能水基钻井液在大庆油田致密油藏水平井中的应用[J]. 石油钻探技术, 2015, 43(4): 59–65. HOU Jie, LIU Yonggui, LI Hai. Application of high-performance water-based drilling fluid for horizontal wells in tight reservoirs of Daqing Oilfield[J]. Petroleum Drilling Techniques, 2015, 43(4): 59–65.
[5] 王万庆. 陇东气田水平井钻井技术[J]. 石油钻探技术, 2017, 45(2): 15–19. WANG Wanqing. Horizontal drilling techniques in Longdong Gas Field[J]. Petroleum Drilling Techniques, 2017, 45(2): 15–19.
[6] 陶丽杰. 添加虚拟靶区优化三维水平井井眼轨道[J]. 断块油气田, 2015, 22(2): 267–269. TAO Lijie. Optimization on 3D trajectory of horizontal well by adding theoretical target[J]. Fault-Block Oil & Gas Field, 2015, 22(2): 267–269.
[7] 韩来聚,牛洪波. 对长水平段水平井钻井技术的几点认识[J]. 石油钻探技术, 2014, 42(2): 7–11. HAN Laiju, NIU Hongbo. Understandings on drilling technology for long horizontal section wells[J]. Petroleum Drilling Techniques, 2014, 42(2): 7–11.
[8] 张映红,路保平,陈作,等. 中国陆相致密油开采技术发展策略思考[J]. 石油钻探技术, 2015, 43(1): 1–6. ZHANG Yinghong, LU Baoping, CHEN Zuo, et al. Technical strategy thinking for developing continental tight oil in China[J]. Petroleum Drilling Techniques, 2015, 43(1): 1–6.
[9] 杨力. 彭水区块页岩气水平井防漏堵漏技术探讨[J]. 石油钻探技术, 2013, 41(5): 16–20. doi: 10.3969/j.issn.1001-0890.2013.05.003 YANG Li. Leak prevention and plugging techniques for shale gas horizontal wells in Pengshui Block[J]. Petroleum Drilling Techniques, 2013, 41(5): 16–20. doi: 10.3969/j.issn.1001-0890.2013.05.003
[10] 陈述,张文华,王雷, 等. 委内瑞拉浅层高水垂比三维水平井下套管工艺[J]. 石油钻探技术, 2013, 41(1): 56–60. doi: 10.3969/j.issn.1001-0890.2013.01.011 CHEN Shu, ZHANG Wenhua, WANG Lei, et al. Casing running technology for high horizontal-displacement to vertical-depth ratio 3D shallow layer horizontal well in Venezuela[J]. Petroleum Drilling Techniques, 2013, 41(1): 56–60. doi: 10.3969/j.issn.1001-0890.2013.01.011
[11] 沈国兵,刘明国,晁文学,等. 涪陵页岩气田三维水平井井眼轨迹控制技术[J]. 石油钻探技术, 2016, 44(2): 10–15. doi: 10.11911/syztjs.201602002 SHEN Guobing, LIU Mingguo, CHAO Wenxue, et al. 3D trajectory control technology for horizontal wells in the Fuling Shale Gas Field[J]. Petroleum Drilling Techniques, 2016, 44(2): 10–15. doi: 10.11911/syztjs.201602002
[12] 史玉才,管志川,张欣,等. 使用螺杆钻具条件下钻井水力参数优化设计方法[J]. 石油钻探技术, 2014, 42(2): 33–36. SHI Yucai, GUAN Zhichuan, ZHANG Xin, et al. Optimization methods for drilling hydraulic parameters when using positive displacement down-hole motor[J]. Petroleum Drilling Techniques, 2014, 42(2): 33–36.
[13] 林永学,王显光,李荣府. 页岩气水平井低油水比油基钻井液研制及应用[J]. 石油钻探技术, 2016, 44(2): 28–33. doi: 10.11911/syztjs.201602005 LIN Yongxue, WANG Xianguang, LI Rongfu. Development of oil-based drilling fluid with low oil-water ratio and its application to drilling horizontal shale gas wells[J]. Petroleum Drilling Techni-ques, 2016, 44(2): 28–33. doi: 10.11911/syztjs.201602005
[14] 叶艳,安文华,尹达,等. 高密度甲酸盐钻井液配方优选及其性能评价[J]. 钻井液与完井液, 2014, 31(1): 37–39. doi: 10.3969/j.issn.1001-5620.2014.01.010 YE Yan, AN Wenhua, YIN Da, et al. Formulation optimizing and performance evaluation of high-density formate drilling fluid[J]. Drilling Fluid & Completion Fluid, 2014, 31(1): 37–39. doi: 10.3969/j.issn.1001-5620.2014.01.010
[15] 张明昌,张新亮,高剑玮. 新型XPJQ系列下套管漂浮减阻器的研制与试验[J]. 石油钻探技术, 2014, 42(5): 114–118. ZHANG Mingchang, ZHANG Xinliang, GAO Jianwei. Developing and testing XPJQ series floating friction reducers for running casing[J]. Petroleum Drilling Techniques, 2014, 42(5): 114–118.
-
期刊类型引用(0)
其他类型引用(2)