碳酸盐岩储层深度酸压用固体颗粒酸的研制

安娜, 罗攀登, 李永寿, 方裕燕, 焦克波

安娜, 罗攀登, 李永寿, 方裕燕, 焦克波. 碳酸盐岩储层深度酸压用固体颗粒酸的研制[J]. 石油钻探技术, 2020, 48(2): 93-97. DOI: 10.11911/syztjs.2020017
引用本文: 安娜, 罗攀登, 李永寿, 方裕燕, 焦克波. 碳酸盐岩储层深度酸压用固体颗粒酸的研制[J]. 石油钻探技术, 2020, 48(2): 93-97. DOI: 10.11911/syztjs.2020017
AN Na, LUO Pandeng, LI Yongshou, FANG Yuyan, JIAO Kebo. Development of Solid Granular Acid for the Deep Acid-Fracturing of Carbonate Reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(2): 93-97. DOI: 10.11911/syztjs.2020017
Citation: AN Na, LUO Pandeng, LI Yongshou, FANG Yuyan, JIAO Kebo. Development of Solid Granular Acid for the Deep Acid-Fracturing of Carbonate Reservoirs[J]. Petroleum Drilling Techniques, 2020, 48(2): 93-97. DOI: 10.11911/syztjs.2020017

碳酸盐岩储层深度酸压用固体颗粒酸的研制

基金项目: 国家科技重大专项“西北超深井高效钻完井工艺技术”(编号:2017ZX05005-005-009)和“靶向酸压控制因素及暂堵转向实验研究”(编号:2016ZX05014-005-012)联合资助
详细信息
    作者简介:

    安娜(1985—)女,河北新乐人,2009年毕业于大庆石油学院应用化学专业,2012年获中国石油大学(北京)化学工程专业硕士学位,助理研究员,主要从事油田酸化压裂工作液的研究与开发工作。E-mail:ann.xbsj@sinopec.com

  • 中图分类号: TE357.2

Development of Solid Granular Acid for the Deep Acid-Fracturing of Carbonate Reservoirs

  • 摘要:

    在采用常规酸液对高温碳酸盐岩储层进行酸化改造时,存在酸岩反应速率快、有效作用距离短和难以实现深部酸化的难题,为此,以磺基酸为心材,以有机磺酸和乙基纤维素复合材料为壁材,采用喷雾干燥工艺固化造粒,研制了一种新型固体颗粒酸。试验评价表明,该固体酸在80~90 ℃温度下可逐步释放出酸液,120 ℃下的完全释放时间为25 min,有效酸质量分数达10.3%以上,反应速率低,可由液体介质携带到裂缝深处。塔河油田THX井应用固体颗粒酸酸化后,日产油量大幅提高。研究表明,固体颗粒酸能有效沟通远端储层,为碳酸盐岩储层高效开发提供了一种新的技术手段。

    Abstract:

    Due to acidizing problems present in high-temperature carbonate reservoirs from conventional acids, such as rapid acid-rock reaction, short effective action distance and difficulty in achieving deep acidizing, a new type of solid granular acid has been developed. The solid acid was prepared by taking sulfonic acid as the core material and using organic sulfonic acid/ethyl cellulose composite as capsule materials, and it could be solidified and granulated by adopting a spray drying process. The capsule material can be dissolved gradually and then an acid solution can be released at a certain temperature, so as to increase the action distance of acid. Experimental evaluation showed that the developed solid acid could release an acid solution gradually at a temperature range of 80 to 90 ℃, the complete release time at 120 ℃ was 25 min, and the effective acid concentration was up to 10.3%. Due to the low reaction rate, it can be carried into the deep fractures by liquid media. Field testing of solid granular acid has been conducted in the well THX of the Tahe Oilfield, and the daily oil production capacity was greatly improved. Studies indicated that the solid granular acid could effectively communicate with distal reservoirs, and provide a new technical means for the efficient development of carbonate reservoirs.

  • 图  1   固体颗粒酸的H+浓度与温度的关系

    Figure  1.   Relationship between the temperature of granular acid and the concentration of hydrogen ions

    图  2   固体颗粒酸不同温度下释放酸质量分数与时间的关系

    Figure  2.   Release rate curves of granular acid at different temperatures

    图  3   120 ℃下固体颗粒酸酸液浓度与酸岩反应速率的关系

    Figure  3.   Relationship between the concentration of granular acid and acid-rock reaction rate at 120 ℃

    图  4   120 ℃下胶凝酸酸液浓度与酸岩反应速率的关系

    Figure  4.   Relationship between the concentration of gelled acid and reaction rate of acid-rock at 120 ℃

    图  5   质量分数为10.0%胶凝酸溶蚀前后的岩心表面形态

    Figure  5.   Core surface morphology before and after eroding by 10.0% mass fraction of gelled acid

    图  6   质量分数为10.0%固体颗粒酸溶蚀前后的岩心表面形态

    Figure  6.   Core surface morphology before and after eroding by 10.0% mass fraction of solid granular acid

    图  7   不同酸液的酸蚀裂缝导流能力对比

    Figure  7.   Comparison of diversion capacity in eroded fractures by different acids

    图  8   THX井酸化施工曲线

    Figure  8.   Acidizing curves of the Well THX

    表  1   几种常用酸在90 ℃下的形态及溶蚀率

    Table  1   Morphology and erosion rate of several common acids at 90 ℃

    酸类型形态溶蚀率,%
    10%甲酸液体12.79
    10%乙酸液体15.37
    10%硝酸液体20.74
    10%磺基酸固体48.86
    10%盐酸液体63.75
    下载: 导出CSV

    表  2   几种不同类型壁材的溶解温度及溶解时间

    Table  2   Comparison of the dissolution temperature and time of several capsule materials

    壁材溶解温度/℃完全溶解时间/min
    海藻酸钠常温5
    壳聚糖不溶
    明胶4080
    羧甲基纤维素常温30
    AE-180~9060
    下载: 导出CSV
  • [1] 蒋廷学,周珺,贾文峰,等. 顺北油气田超深碳酸盐岩储层深穿透酸压技术[J]. 石油钻探技术, 2019, 47(3): 140–147. doi: 10.11911/syztjs.2019058

    JIANG Tingxue, ZHOU Jun, JIA Wenfeng, et al. Deep penetration acid-fracturing technology for ultra-deep carbonate oil & gas reservoirs in the Shunbei Oil and Gas Field[J]. Petroleum Drilling Techniques, 2019, 47(3): 140–147. doi: 10.11911/syztjs.2019058

    [2] 祝琦,蒋官澄,兰夕堂,等. 固体硝酸CA-1的性能实验研究[J]. 钻井液与完井液, 2013, 30(3): 70–72. doi: 10.3969/j.issn.1001-5620.2013.03.021

    ZHU Qi, JIANG Guancheng, LAN Xitang, et al. Performance research on solid nitric acid CA-1[J]. Drilling Fluid & Completion Fluid, 2013, 30(3): 70–72. doi: 10.3969/j.issn.1001-5620.2013.03.021

    [3] 李楠,罗志锋,鄢宇杰,等. 智能控制固体酸SRA-1释放研究[J]. 石油与天然气化工, 2019, 48(1): 86–90. doi: 10.3969/j.issn.1007-3426.2019.01.015

    LI Nan, LUO Zhifeng, YAN Yujie, et al. Study on release of smart controlled solid acid SRA-1[J]. Chemical Engineering of Oil & Gas, 2019, 48(1): 86–90. doi: 10.3969/j.issn.1007-3426.2019.01.015

    [4] 李峰,赵海龙,梅玉芬. 固体有机酸–潜伏酸酸化用于稠油井解堵[J]. 油田化学, 1999, 16(2): 113–115. doi: 10.3969/j.issn.1000-4092.1999.02.005

    LI Feng, ZHAO Hailong, MEI Yufen. Acidizing viscous oil production wells with solid mixed organic/latent acids[J]. Oilfield Chemistry, 1999, 16(2): 113–115. doi: 10.3969/j.issn.1000-4092.1999.02.005

    [5] 赵立强,刘欣,刘平礼,等. 新型碳酸盐岩油气层酸压技术: 固体酸酸压技术[J]. 天然气工业, 2004, 24(10): 96–98. doi: 10.3321/j.issn:1000-0976.2004.10.031

    ZHAO Liqiang, LIU Xin, LIU Pingli, et al. Acid-frac technique with solid acid: new acid-frac technique for carbonate reservoir[J]. Natural Gas Industry, 2004, 24(10): 96–98. doi: 10.3321/j.issn:1000-0976.2004.10.031

    [6] 周迎菊,宋淑娥,刘武友,等. 氨基磺酸-氟化氢铵酸化液用于注水井解堵[J]. 油田化学, 1999, 12(3): 230–233.

    ZHOU Yingju, SONG Shu’e, LIU Wuyou, et al. Aminosulronic acid/ammonium hydrofluoride acidizing system for removing blockage in water injection wells[J]. Oilfield Chemistry, 1999, 12(3): 230–233.

    [7] 周林波,刘红磊,解皓楠,等. 超深碳酸盐岩水平井水力喷射定点深度酸化压裂技术[J]. 特种油气藏, 2019, 26(3): 158–162. doi: 10.3969/j.issn.1006-6535.2019.03.030

    ZHOU Linbo, LIU Honglei, XIE Haonan, et al. Fixed-point acid fracturing technology in the ultra-deep carbonate horizontal well[J]. Special Oil & Gas Reservoirs, 2019, 26(3): 158–162. doi: 10.3969/j.issn.1006-6535.2019.03.030

    [8] 刘建坤,蒋廷学,周林波,等. 碳酸盐岩储层多级交替酸压技术研究[J]. 石油钻探技术, 2017, 45(1): 104–111.

    LIU Jiankun, JIANG Tingxue, ZHOU Linbo, et al. Multi-stage alternative acid fracturing technique in carbonate reservoirs stimulation[J]. Petroleum Drilling Techniques, 2017, 45(1): 104–111.

    [9] 王涛,赵兵,曲占庆,等. 塔河老区井周弱势通道暂堵酸压技术[J]. 断块油气田, 2019, 26(6): 794–799.

    WANG Tao, ZHAO Bing, QU Zhanqing, et al. Temporarily plugging and acid-fracturing technology in weak channels near wellbore region in Tahe Oilfield[J]. Fault-Block Oil & Gas Field, 2019, 26(6): 794–799.

    [10] 王明星,吴亚红,孙海洋,等. 酸液对酸蚀裂缝导流能力影响的研究[J]. 特种油气藏, 2019, 26(5): 153–158. doi: 10.3969/j.issn.1006-6535.2019.05.026

    WANG Mingxing, WU Yahong, SUN Haiyang, et al. Influence of acid on the conductivity of acid corrosion fracture[J]. Special Oil & Gas Reservoirs, 2019, 26(5): 153–158. doi: 10.3969/j.issn.1006-6535.2019.05.026

    [11] 赵立强,高俞佳,袁学芳,等. 高温碳酸盐岩储层酸蚀裂缝导流能力研究[J]. 油气藏评价与开发, 2017, 5(1): 20–26. doi: 10.3969/j.issn.2095-1426.2017.01.004

    ZHAO Liqiang, GAO Yujia, YUAN Xuefang, et al. Research on flow conductivity of acid etched fracture of carbonate reservoir under high temperature[J]. Reservoir Evaluation and Development, 2017, 5(1): 20–26. doi: 10.3969/j.issn.2095-1426.2017.01.004

    [12] 李年银,赵立强,张倩,等. 酸压过程中酸蚀裂缝导流能力研究[J]. 钻采工艺, 2008, 31(6): 59–62. doi: 10.3969/j.issn.1006-768X.2008.06.019

    LI Nianyin, ZHAO Liqiang, ZHANG Qian, et al. Acid etched fracture conductivity study in acid fracturing[J]. Drilling & Production Technology, 2008, 31(6): 59–62. doi: 10.3969/j.issn.1006-768X.2008.06.019

图(8)  /  表(2)
计量
  • 文章访问数:  1186
  • HTML全文浏览量:  536
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2019-05-23
  • 修回日期:  2020-01-12
  • 网络出版日期:  2020-03-01
  • 刊出日期:  2020-02-29

目录

    /

    返回文章
    返回