In-Situ CO2 Generation Technology in Bohai P Oilfield
-
摘要:
针对渤海P油田储层非均质性强、注水强度大,注入水突进和无效循环导致水驱开发效率低的问题,开展了层内生成CO2调驱技术研究。通过生气效率评价试验优选出最优生气体系,并利用Waring-Blender法和填砂管流动试验优选了配套发泡剂和稳定剂。室内试验结果表明:最优生气体系为生气剂A+释气剂D,其生气效率可达96.2%;发泡剂体系为0.2%发泡剂2+0.1%发泡剂5,其发泡体积为740 mL,析液半衰期为219 s;发泡体系中加入稳定剂1,对渗透率2 000~10 000 mD填砂模型的封堵率在90%以上。渤海P油田15个注采井组应用了层内生成CO2调驱技术,累计增注量69 986 m3,累计增油量33 413 m3,有效率达100%,有效期长达5个月。研究表明,层内生成CO2调驱技术技术对渤海P油田具有良好的适用性,解决了注水开发存在的问题。
Abstract:In order to solve the problem of low water flooding development efficiency caused by strong reservoir heterogeneity, high water injection intensity, injected water influx and ineffective circulation in the Bohai P Oilfield, a study of in-situ CO2 generation technology was carried out. Firstly, the optimal gas generation system was selected by evaluating gas generation efficiency. Then, the foaming agent and blocking agent were screened by the Waring-Blender method and sandpack column flow experiment. Laboratory test results showed that gas generation efficiency could reach 96.2% when the gas system was blowing agent A + gas release agent D. The optimal foaming agent system was 0.2% foaming agent 2 + 0.1% foaming agent 5. The foaming volume was 740 mL and the half-life of dissolve-out liquid could be maintained for 219 seconds. When blocking agent 1 was added in the foaming system, the plugging rate could be maintained above 90% in the sandpack column with a permeability of 2 000-10 000 mD. The in-situ CO2 generation technology had been used in 15 injector producer pairs of the Bohai P Oilfield, resulting in the enhancement of accumulative oil recovery of 33 413 m3 by injecting 69 986 m3 of CO2 in total, with the effective rate reaching 100% and effective period up to 5 months, which indicated that in-situ CO2 generation technology had good applicability in Bohai P Oilfield and dissolves the problems existing in the water flood development of this field.
-
-
表 1 不同生气体系的生气效果(60 ℃)
Table 1 Statistics of system components and gas generation effects (60℃)
生气体系 生气量/mL 理论生气量/mL 生气效率,% 生气剂A+释气剂D 279 290 96.2 生气剂B+释气剂D 280 290 96.6 生气剂C+释气剂D 279 290 96.2 生气剂A+释气剂E 242 290 83.4 生气剂B+释气剂E 249 290 85.9 生气剂C+释气剂E 267 290 92.1 生气剂A+释气剂F 66 290 22.8 生气剂B+释气剂F 78 290 26.9 生气剂C+释气剂F 123 290 42.4 表 2 B1井层内生成CO2注入段塞组合
Table 2 Slug formation form in-situ CO2 generation in Well B1
注入顺序 生气剂体积/m3 隔离水体积/m3 释气剂体积/m3 段塞1 60 3 60 段塞2 60 3 60 段塞3 60 3 60 段塞4 30 3 30 段塞5 30 3 30 段塞6 30 3 30 段塞7 30 3 30 表 3 层内生成CO2调驱技术应用前后注水井B1井吸水剖面测试结果
Table 3 Comparison of water absorption profile in Well B1 before and after measurement of in-situ CO2 generation
小层号 吸水量占比,% 应用前 应用后 1 25 5 2 1 9 3 69 13 4 5 73 -
[1] 梁丹,吕鑫,蒋珊珊,等. 渤海油田分级组合深部调剖技术[J]. 石油钻探技术, 2015, 43(2): 104–109. LIANG Dan, LYU Xin, JIANG Shanshan, et al. The technology of classified combination of deep profile control in the Bohai Oilfield[J]. Petroleum Drilling Techniques, 2015, 43(2): 104–109.
[2] 张博,徐景亮,李翔,等. 层内生成CO2技术提高采收率机理研究及应用[J]. 西安石油大学学报(自然科学版), 2017, 32(3): 94–98. ZHANG Bo, XU Jingliang, LI Xiang, et al. Mechanism research and application of enhancing oil recovery by in-situ CO2 generating technology[J]. Journal of Xi’an Shiyou University(Natural Science Edition), 2017, 32(3): 94–98.
[3] 杨寨,郑玉飞. 渤海油田多轮次层内生成CO2调驱效果优化研究[J]. 断块油气田, 2019, 26(1): 123–126. YANG Zhai, ZHENG Yufei. Study on multi-round profile control effect optimization of in-situ carbon dioxide generation in Bohai Oilfield[J]. Fault-Block Oil & Gas Field, 2019, 26(1): 123–126.
[4] 薄其众, 戴涛,杨勇,等. 胜利油田樊142块特低渗透油藏CO2驱油储层压力动态变化研究[J]. 石油钻探技术, 2016, 44(6): 93–98. BO Qizhong, DAI Tao, YANG Yong, et al. Research on the changes in formation pressure performance of CO2 flooding in the ultra-low permeability oil reservoir: Block Fan 142 of the Shengli Oilfield[J]. Petroleum Drilling Techniques, 2016, 44(6): 93–98.
[5] 王飞,李兆敏,李松岩,等. 自生热泡沫体系在多孔介质中协同作用机制[J]. 中国石油大学学报(自然科学版), 2016, 40(3): 130–135. WANG Fei, LI Zhaomin, LI Songyan, et al. Mechanism study of a chem-pyrogenic-foam system in porous media[J]. Journal of China University of Petroleum(Edition of Natural Science), 2016, 40(3): 130–135.
[6] JIA Xiaofei, MA Kuiqian, LIU Yingxian, et al. Enhance heavy oil recovery by in-situ carbon dioxide generation and application in China offshore oilfield[R]. SPE 165215, 2013.
[7] GUMERSKY Kh Kh, DZHAFAROV I S, SHAKHVERDIEV A Kh, et al. In-situ generation of carbon dioxide: new way to increase oil recovery[R]. SPE 65170, 2000.
[8] SHIAU B J B, HSU T, ROBERT B L, et al. Improved chemical flood efficiency by in situ CO2 generation[R]. SPE 129893, 2010.
[9] 邓建华,赵健,庄羽竹,等. 层内自生CO2吞吐技术室内研究[J]. 内蒙古石油化工, 2013(19): 101–103. DENG Jianhua, ZHAO Jian, ZHUANG Yuzhu, et al. Laboratory study on in-layer self-generating CO2 huff and puff technology[J]. Inner Mongulia Petrochemical Industry, 2013(19): 101–103.
[10] 赵仁保,岳湘安,侯吉瑞,等. 自生气凝胶泡沫体系单液法深部调剖剂可行性研究[J]. 油田化学, 2005, 22(4): 362–365. doi: 10.3969/j.issn.1000-4092.2005.04.020 ZHAO Renbao, YUE Xiang’an, HOU Jirui, et al. Feasibility study of authigenic gas gelling/foaming fluid as indepth profiling agent injected in single slug[J]. Oilfield Chemistry, 2005, 22(4): 362–365. doi: 10.3969/j.issn.1000-4092.2005.04.020
[11] 张国萍,肖良,胡艳霞,等. 层内生气提高采收率技术在中原断块油田的应用[J]. 油气地质与采收率, 2004, 11(5): 60–61. doi: 10.3969/j.issn.1009-9603.2004.05.021 ZHANG Guoping, XIAO Liang, HU Yanxia, et al. Applications of in situ gas generating for enhanced oil recovery to Zhongyuan faulted block oilfield[J]. Petroleum Geology and Recovery Efficiency, 2004, 11(5): 60–61. doi: 10.3969/j.issn.1009-9603.2004.05.021
[12] 李文轩,秦延才,毛源,等. 一种新型地下自生泡沫酸化技术的研究与应用[J]. 钻采工艺, 2016, 39(4): 35–37. doi: 10.3969/J.ISSN.1006-768X.2016.04.11 LI Wenxuan, QIN Yancai, MAO Yuan, et al. Research and application of a new type of underground self-generating foam acidification technology[J]. Drilling & Production Technology, 2016, 39(4): 35–37. doi: 10.3969/J.ISSN.1006-768X.2016.04.11
-
期刊类型引用(3)
1. 杨振策. 低渗透油田注水采油开发技术研究. 天津化工. 2021(06): 72-75 . 百度学术
2. 范宇,汤继周,陈伟华,张卓,唐波涛,杨文涛. 河道致密砂岩螺旋射孔完井压裂优化设计. 测井技术. 2021(06): 646-656 . 百度学术
3. 房娜,姜光宏,程奇,李广龙,王双龙. 裂缝性油藏不同见水模式下的注水优化. 断块油气田. 2020(05): 633-637 . 百度学术
其他类型引用(2)