Acidizing Technology for Deep Penetration in Main Fault Zone of Shunbei Oil and Gas Field
-
摘要:
顺北油气田主干断裂带碳酸盐岩储层裂缝发育,钻井过程中井壁易垮塌掉块,超深水平井中岩屑难以返出,且部分井钻井液漏失量大,造成储层堵塞严重,常规酸化技术无法解除污染,稳产难度大。为此,通过优选解堵酸及优化施工参数等攻关研究,形成了“近井解堵+远井疏通”的主干断裂带深穿透酸化技术,其基本原理为:近井地带采用低黏度、反应速度快的酸液,快速扩散形成各向蚓孔,穿透污染带;远井地带大排量、较大规模地注入高黏酸液,对远井通道进行疏通,建立高导流渗流通道。该酸化技术在顺北油气田应用6井次,酸化效果显著,同时解决了近井和远井供液通道堵塞的问题,累计增产油量16.06×104 t。现场应用结果表明,该酸化技术可以解决顺北油气田主干断裂带碳酸盐岩储层的堵塞问题,对国内外类似储层酸化解堵具有借鉴价值。
Abstract:Due to fractures developed in the carbonate reservoirs of main fault zones in the Shunbei Oil and Gas Field, the well wall is prone to sloughing and falling frequently during drilling, and the cuttings in ultra-deep horizontal well have very difficult flow back, along with serious leakage in some wells. The cuttings accumulation and serious leakage cause the payzone to be blocked heavily, and this blockage cannot be removed by conventional acidizing technologies. In fact, they experience great difficulty in keeping stable production. In order to solve the problem, the team developed a working hypothesis and then tested it. The low-viscosity and quick reaction acid was used in near the wellbore to create wormholes by rapid diffusion penetrating damage zone, while large amount of high-viscosity acid was injected to far wellbore zone to create high-conductivity channels. On this basis, a deep penetration acidizing technology in the main fault zone was developed, featuring “plug removal near wellbore and channeling far from wellbore”. This technology has been applied to 6 wells, resulting in cumulative oil increment of 16.06×104 t, which shows great acidizing effects and resolves the problems of payzone blocking near and far from the wellbore. Field application results showed that the technology could effectively solve the blocking problems of main fault zone in Shunbei oil and gas field, and provide a reference for acidizing and plug removal of similar carbonate reservoirs at home and abroad.
-
Keywords:
- main rupture zone /
- carbonate reservoir /
- plugging /
- acidizing /
- plug removal /
- Shunbei Oil and Gas Field
-
顺北油气田主体位于顺托果勒低隆起,受盆地多期构造运动影响,自北向南发育多个走滑断裂体系,储层地质特征明显受不同级别的断裂带控制,主干断裂带发育大型洞穴–裂缝系统[1-4]。钻井过程中,钻遇断裂带内异常反射集合体时均发生了放空或漏失[4-8],且漏失量大;裂缝发育的地层井壁不稳定,钻井过程中易垮塌掉块,与漏失钻井液一起堵塞井周裂缝。大部分井完井后测试效果不理想,需通过酸化解堵作业恢复单井产能[9-13],但该区裂缝发育,酸液不仅要穿透近井污染带,还要实现深部穿透,连通远端裂缝带,才能发挥酸化解堵增产的作用。由于目前常规酸化技术的作用距离短,无法实现深穿透酸化。因此,亟需研究适合顺北油气田主干断裂带的酸化技术。为此,笔者提出了解决近井污染、建立高导通道、沟通远端裂缝带和恢复单井产能的技术思路,研究形成了“近井解堵+远井疏通”的主干断裂带深穿透酸化技术,现场应用取得了很好的效果。
1. 堵塞原因与酸化解堵难点
钻井岩屑和钻井液中的重晶石是井周裂缝的主要堵塞物,因此,应该分析堵塞成因及酸化解堵的难点,然后研究解堵的办法。
1.1 钻井岩屑堵塞
顺北油气田所钻井以超深水平井为主,井深达8 000 m左右,水平段长400~948 m,因储层埋藏超深、裸眼井段长、井下温度高和漏失量大,套管难以下入[14-16],均为裸眼完井。奥陶系目的层为断裂控制的碳酸盐岩储层,裂缝非常发育,储集空间以断裂破碎形成的空间为主,井壁不稳定,灰岩骨架颗粒易剥落、掉块,导致岩屑和岩块在裸眼段裂缝中堆积,造成近井地层堵塞。
其酸化解堵难点为:储层断裂发育,只有深穿透酸化才能沟通远端裂缝,但若采用大排量酸化,容易将岩屑带入储层深部,对储层造成二次伤害。
1.2 漏失钻井液堵塞
统计表明,顺北油气田平均单井可漏失密度1.20~1.40 kg/L的钻井液961.8 m3,表皮系数基本随钻井液漏失量增大而增大(见图1),说明钻井液漏失量越大,储层伤害程度越大。
顺北油气田目的层钻进所用钻井液的主要成分约有20种,部分物质不能水溶,主要不溶物为重晶石和膨润土。钻井液密度越大,重晶石和膨润土的含量越高,岩心污染后的渗透率降低越显著(见表1)。
表 1 不同密度钻井液伤害试验结果Table 1. Test result of formation damage at different mud densities钻井液密度/
(kg·L–1)渗透率/mD 伤害程度 污染前 污染后 1.716 19.00 11.02 0.42 1.716 33.00 12.21 0.63 1.716 27.00 11.34 0.58 1.412 14.00 8.68 0.38 1.412 17.00 7.65 0.55 1.412 23.00 11.96 0.48 注:伤害程度=1-污染后渗透率/污染前渗透率。 其酸化解堵难点为:钻井液中的重晶石、膨润土不与酸液反应,只有重晶石解堵剂才能使其溶解,但解堵剂对重晶石的溶蚀率较低(26.25%),且易与岩石反应(溶蚀率达29.69%),而顺北油气田的储层90%以上为碳酸盐岩,会消耗大量的解堵剂,解堵剂价格昂贵,施工成本将大幅增加。此外,该解堵剂的主要有效成分为二甲基甲酰胺,有剧毒,施工时存在安全隐患。
2. 深穿透酸化工艺
常规酸化的酸液溶蚀形态主要为面溶蚀和均匀溶蚀,有效处理范围小,只能局限在近井地带,且无法穿透重晶石污染带。因此,需要从酸液优选、施工参数优化等方面优化酸化工艺,同时解决近井地带污染和沟通远端裂缝带的问题。
2.1 技术思路
针对近井地带钻井岩屑和钻井液固相的堵塞污染,优选黏度低、反应速度快的酸液体系溶解岩屑,绕过重晶石,快速扩散、形成各向蚓孔群,突破近井污染带;彻底解除近井地带的污染后,采用高黏度酸液,大排量、较大规模地对远井长裂缝进行疏通,建立高导流渗流通道,形成“近井解堵+远井疏通”的酸化技术思路(见图2),使油气通道变得通畅,形成顺北油气田主干断裂带深穿透酸化技术。
2.2 解堵酸优选
胶凝酸、地面交联酸和变黏酸的耐温能力均可达到140 ℃,是目前应用比较广泛的酸液体系,因此通过试验选择性能最好的酸液作为解堵酸。在110 ℃(耐酸试验仪器的最高许可温度)条件下,测试了酸液质量分数为20%的胶凝酸、地面交联酸和变黏酸的滤失速率,以及不同浓度下3种酸的酸岩反应速率,结果如图3和图4所示(图4中:J为反应速率,即单位时间流过单位岩石面积的物质的量,mol/(cm2·s);C为某时刻的酸液内部浓度,mol/L)。利用数值模拟方法计算了胶凝酸与地面交联酸在温度170 ℃下的酸蚀有效距离,结果如图5所示。
由图3—图5可知,胶凝酸的黏度低,滤失量最高,反应速率略低于变黏酸,更易形成酸蚀蚓孔穿透污染带,且其酸蚀有效距离短,因此优选胶凝酸作为近井地带解堵酸;地面交联酸的黏度高,滤失量和反应速率最低,酸蚀有效距离长,适合在高温的顺北油气田储层进行深度改造,沟通远端裂缝,形成高导流能力渗流通道,因此选择地面交联酸作为远井地带解堵酸。
2.3 施工参数优化
2.3.1 解堵酸排量优化
将酸液质量分数设置为20%,注入体积为20 m3,模拟注入速度为0.38~5.00 m3/min时酸液穿透井周储集体后的孔隙度场情况,结果如图6和图7所示(图7中,白色中心区域代表井筒,蓝色区域代表井周酸化半径区域,纵、横坐标为距井周的半径距离)。
由图6和图7可知:排量较低时(0.38 m3/min),酸液主要溶蚀岩石壁面,井眼周围溶蚀严重,未形成酸蚀蚓孔,不能穿透地层;排量为1.88 m3/min时,酸液优先进入最近的裂缝,同时沿井眼周向发育出多个蚓孔,有利于形成丰富的蚓孔网络,绕过不酸溶物,穿过污染带,沟通近井裂缝,且受蚓孔竞争的影响,主蚓孔获得的流量大,生长得更快,可以更早突破污染带;排量进一步增大至2.83和5.00 m3/min时,虽然酸蚀蚓孔更细,穿透距离略有增加,但是非均质地层对高流速更为敏感,井眼周向只沿最近的裂缝发育出蚓孔,不利于沟通远端裂缝。综合考虑酸液穿透地层的距离和沟通远端裂缝的能力,优化注酸排量为2.00 m3/min。
2.3.2 注酸规模优化
通过建立酸化模型,对其进行模拟计算,确定不同施工排量、施工时间下酸蚀蚓孔的发育情况,进而确定注酸规模。
顺北油气田复杂的裂缝系统对酸化模型的收敛条件要求苛刻,如果采用较大的酸化半径,需要将模型尺寸增大,计算量也将大大增加。调研发现,G.Glasbergen等人[17]提出了一种不存在收敛问题的简化计算方法,即在线性流条件下,蚓孔区域的平均推进速度与酸液注入线速度的2/3次幂成正比。以该方法为基础,计算得到注酸施工时间与酸化半径的5/3次幂成正比。因此,利用这一方法估算施工时间,进而确定酸液用量。
通过酸化模型计算,得到了不同注酸时间后的酸蚀蚓孔发育情况(见图8)。注酸时间与酸化半径的1.527次幂成正比,与5/3接近,说明该方法合理。
通过上述分析和研究,形成了顺北油气田主干断裂带深穿透酸化技术。其具体的施工工艺为:先对近井地带进行酸化解堵,根据单井酸化半径确定注酸规模,低排量(2.00 m3/min)注入反应速度快的胶凝酸,穿透污染带,疏通井筒与近井储层的油气通道;然后处理远井地带,大排量(以井口限压为准)注入高黏度地面交联酸,形成高导流长酸蚀缝,沟通远井储集体。
3. 现场应用
截至目前,顺北油气田主干断裂带深穿透酸化技术现场应用6井次,累计增产油量16.06×104 t,取得了显著的酸化解堵效果。下面以顺北C井为例介绍该技术的具体应用情况。
顺北C井位于顺北1号主干断裂带,该井钻进8 068.08~8 069.08 m井段时出现放空,累计漏失钻井液289.98 m3。初期自喷试油,油管压力快速降至0 MPa,后采取气举方式,“自喷+气举”累计排出液体62.2 m3。综合分析认为,储层物性较好,但存在地层堵塞。为此,研究采用深穿透酸化技术:首先,以0.3~0.5 m3/min排量注入胶凝酸130 m3,快速溶蚀岩屑,穿透近井污染带,此阶段因套管压力超限,排量无法提升到2.00 m3/min,但后期套管压力下降30 MPa,说明近井解堵效果明显;然后,在施工设备承压范围内尽可能以高排量(最高达5.8 m3/min)注入穿透能力强的地面交联酸170 m3,在地层深部形成高导流通道,沟通远井储集体。压裂后,根据模拟分析结果,酸化深度达到了60 m,初期日产油量72.8 t,不含水,酸化效果显著。
4. 结论与建议
1)钻井过程中的岩屑掉块堆积与漏失钻井液中的重晶石导致近井裂缝堵塞,重晶石不溶于酸液,酸化时排量稍大还会压实裂缝中的岩屑,造成二次堵塞;常规酸化无法穿透近井污染带,作用半径有限,无法在近井筒与远井裂缝储集体之间建立高导渗流通道,影响单井产能的释放。
2)提出了“近井解堵+远井疏通”的酸化技术思路,从解堵酸液优选、排量优化和注酸规模优化等方面进行了试验分析,研究形成了顺北油气田主干断裂带深穿透酸化技术。现场应用证明,该技术酸化效果显著,可解决近井地带污染、释放远井储层产能的问题。
3)目前顺北油气田主干断裂带深穿透酸化技术尚不能彻底解决钻井液与胶质沥青质的复合堵塞,需在分析钻井液与胶质沥青质复合堵塞物成分的基础上,进一步研究针对性的解堵工艺。
-
表 1 不同密度钻井液伤害试验结果
Table 1 Test result of formation damage at different mud densities
钻井液密度/
(kg·L–1)渗透率/mD 伤害程度 污染前 污染后 1.716 19.00 11.02 0.42 1.716 33.00 12.21 0.63 1.716 27.00 11.34 0.58 1.412 14.00 8.68 0.38 1.412 17.00 7.65 0.55 1.412 23.00 11.96 0.48 注:伤害程度=1-污染后渗透率/污染前渗透率。 -
[1] 闫娥,张艳红,黄英. 顺北地区奥陶系碳酸盐岩储层发育特征[J]. 内江科技, 2013, 34(5): 89–90. doi: 10.3969/j.issn.1006-1436.2013.05.063 YAN E, ZHANG Yanhong, HUANG Ying. Characteristics of Ordovician carbonate reservoirs in Shunbei Area[J]. Neijiang Science & Technology, 2013, 34(5): 89–90. doi: 10.3969/j.issn.1006-1436.2013.05.063
[2] 焦方正. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景[J]. 石油与天然气地质, 2018, 39(2): 207–216. doi: 10.11743/ogg20180201 JIAO Fangzheng. Significance and prospect of ultra-deep carbonate fault-karst reservoirs in Shunbei Area, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(2): 207–216. doi: 10.11743/ogg20180201
[3] 邓尚,李慧莉,张仲培,等. 塔里木盆地顺北及邻区主干走滑断裂带差异活动特征及其与油气富集的关系[J]. 石油与天然气地质, 2018, 39(5): 878–887. doi: 10.11743/ogg20180503 DENG Shang,LI Huili,ZHANG Zhongpei,et al. Characteristics of differential activities in major strike-slip fault zones and their control on hydrocarbon enrichment in Shunbei Area and its surroundings, Tarim Basin[J]. Oil & Gas Geology, 2018, 39(5): 878–887. doi: 10.11743/ogg20180503
[4] 张平,贾晓斌,白彬珍,等. 塔河油田钻井完井技术进步与展望[J]. 石油钻探技术, 2019, 47(2): 1–8. ZHANG Ping, JIA Xiaobin, BAI Binzhen, et al. Progress and outlook on drilling and completion technologies in the Tahe Oilfield[J]. Petroleum Drilling Techniques, 2019, 47(2): 1–8.
[5] 鲁新便,胡文革,汪彦,等. 塔河地区碳酸盐岩断溶体油藏特征与开发实践[J]. 石油与天然气地质, 2015, 36(3): 347–355. doi: 10.11743/ogg20150301 LU Xinbian, HU Wenge, WANG Yan, et al. Characteristics and development practice of fault-karst carbonate reservoirs in Tahe Area, Tarim Basin[J]. Oil & Gas Geology, 2015, 36(3): 347–355. doi: 10.11743/ogg20150301
[6] 周文,李秀华,金文辉,等. 塔河奥陶系油藏断裂对古岩溶的控制作用[J]. 岩石学报, 2011, 27(8): 2339–2348. ZHOU Wen, LI Xiuhua, JIN Wenhui, et al. The control action of fault to paleokarst in view of Ordovician reservoir in Tahe Area[J]. Acta Petrologica Sinica, 2011, 27(8): 2339–2348.
[7] 范胜,宋碧涛,陈曾伟,等. 顺北5-8井志留系破裂性地层提高承压能力技术[J]. 钻井液与完井液, 2019, 36(4): 431–436. doi: 10.3969/j.issn.1001-5620.2019.04.006 FAN Sheng, SONG Bitao, CHEN Zengwei, et al. Technology for enhancing pressure bearing capacity of fractured Silurian system in Well Shunbei 5-8[J]. Drilling Fluid & Completion Fluid, 2019, 36(4): 431–436. doi: 10.3969/j.issn.1001-5620.2019.04.006
[8] 翟晓先. 塔里木盆地塔河特大型油气田勘探实践与认识[J]. 石油实验地质, 2011, 33(4): 323–331. doi: 10.3969/j.issn.1001-6112.2011.04.001 ZHAI Xiaoxian. Exploration practice and experience of Tahe giant oil-and-gas field, Tarim Basin[J]. Petroleum Geology & Experiment, 2011, 33(4): 323–331. doi: 10.3969/j.issn.1001-6112.2011.04.001
[9] 周林波,刘红磊,解皓楠,等. 超深碳酸盐岩水平井水力喷射定点深度酸化压裂技术[J]. 特种油气藏, 2019, 26(3): 158–162. ZHOU Linbo, LIU Honglei, XIE Haonan, et al. Fixed-point acid fracturing technology in the ultra-deep carbonate Horizontal well[J]. Special Oil & Gas Reservoirs, 2019, 26(3): 158–162.
[10] 曲占庆,林强,郭天魁,等. 顺北油田碳酸盐岩酸蚀裂缝导流能力实验研究[J]. 断块油气田, 2019, 26(4): 533–536. QU Zhanqing, LIN Qiang, GUO Tiankui, et al. Experimental study on acid fracture conductivity of carbonate rock in Shunbei Oilfield[J]. Fault-Block Oil & Gas Field, 2019, 26(4): 533–536.
[11] 何春明,陈红军,王文耀. 碳酸盐岩储层转向酸化技术现状与最新进展[J]. 石油钻探技术, 2009, 37(5): 121–126. HHE Chunming, CHEN Hongjun, WANG Wenyao. Diversion acidizing used for carbonate reservoir: state-of-the-art and new development[J]. Petroleum Drilling Techniques, 2009, 37(5): 121–126.
[12] 朝鲁门,史继伟,王天柱,等. 顺北5井产量递减原因分析及酸化压裂效果评价[J]. 化工管理, 2018(18): 143–144. doi: 10.3969/j.issn.1008-4800.2018.18.115 CHAO Lumen, SHI Jiwei, WANG Tianzhu, et al. Rate decline analysis and evaluation to effect of fracturing acidizing for Shunbei 5 well[J]. Chemical Enterprise Management, 2018(18): 143–144. doi: 10.3969/j.issn.1008-4800.2018.18.115
[13] 杨乾隆,李立标,陶思羽,等. 注水井不动管柱螯合酸脉冲式注入酸化增注技术[J]. 石油钻探技术, 2018, 46(5): 90–94. YANG Qianlong, LI Libiao, TAO Siyu, et al. Chelate acid pulse injection and acidizing stimulation technology for immobilized injecting well string[J]. Petroleum Drilling Techniques, 2018, 46(5): 90–94.
[14] 张猛,赵磊. 顺北油田固井工艺技术浅析[J]. 中国石油和化工标准与质量, 2016, 36(18): 109–110. doi: 10.3969/j.issn.1673-4076.2016.18.055 ZHANG Meng, ZHAO Lei. Discussion on the cementing technology in Shunbei Oil and Gas Field[J]. China Petroleum and Chemical Standard and Quality, 2016, 36(18): 109–110. doi: 10.3969/j.issn.1673-4076.2016.18.055
[15] 邹书强,王建云,张红卫,等. 顺北鹰1井ϕ444.5 mm长裸眼固井技术[J]. 石油钻探技术, 2020, 48(1): 40–45. doi: 10.11911/syztjs.2020008 ZOU Shuqiang, WANG Jianyun, ZHANG Hongwei, et al. ϕ444.5 mm long openhole cementing technology for Well SBY-1[J]. Petroleum Drilling Techniques, 2020, 48(1): 40–45. doi: 10.11911/syztjs.2020008
[16] 刘彪,潘丽娟,王圣明,等. 顺北油气田超深井井身结构系列优化及应用[J]. 石油钻采工艺, 2019, 41(2): 130–136. doi: 10.13639/j.odpt.2019.02.002 LIU Biao, PAN Lijuan, WANG Shengming, et al. Casing program optimization and application of ultradeep wells in Shunbei Oil and Gas Field[J]. Oil Drilling & Production Technology, 2019, 41(2): 130–136. doi: 10.13639/j.odpt.2019.02.002
[17] GLASBERGEN G, BUIJSE M. Improved acid diversion design using a placement simulator[R]. SPE 102412, 2006.
-
期刊类型引用(7)
1. 蔡珺君,戴瑞瑞,任勇,彭先,李隆新,刘微,王蓓,刘微. 基于碳酸盐岩储层裂缝表征与产能描述的开发技术对策——以川西北双鱼石区块栖霞组气藏为例. 断块油气田. 2023(01): 120-128 . 百度学术
2. 李康,汤佳佳,郝杰,武金卫. 注水井多氢酸深部酸化技术研究与化学实验. 粘接. 2022(08): 133-137 . 百度学术
3. 纪成,赵兵,李建斌,罗攀登,房好青. 温度响应地下自生成支撑剂研究. 石油钻探技术. 2022(04): 45-51 . 本站查看
4. 李小刚,秦杨,朱静怡,刘紫微,金心岫,高晨轩,靳文博,杜博迪. 自生酸酸液体系研究进展及展望. 特种油气藏. 2022(06): 1-10 . 百度学术
5. 李新勇,纪成,王涛,郭天魁,王晓之,曲占庆. 顺北油田上浮剂封堵及泵注参数实验研究. 断块油气田. 2021(01): 139-144 . 百度学术
6. 王伟峰,杨浩,冯青,寇双燕,黄子俊. 深穿透解堵技术适应性油藏数值模拟研究. 石油化工应用. 2021(05): 11-17 . 百度学术
7. 牟建业,张宇,牟善波,张士诚,马新仿. 缝洞型碳酸盐岩储层酸液流动反应建模. 石油科学通报. 2021(03): 465-473 . 百度学术
其他类型引用(4)