An Ordered Clustering Based Segmentation Method for Water Control Completion with AICD in Horizontal Wells
-
摘要:
目前水平井分段完井时主要依靠现场经验进行分段,尚未形成完善的分段方法,制约了控水完井技术的应用。为此,基于有序聚类方法,结合水平井筒流入剖面,以延长无水采油期和提高累计产油量为目标,建立了水平井AICD控水完井分段方法。模拟分析某非均质底水油藏发现:在水平井配产2 000 m3/d的情况下,与均匀分段和按测井渗透率分布非均匀分段2种AICD完井方案相比,该分段方法对应的无水采油期分别为延长了0.86 d和缩短了1.76 d,累计产油量分别提高了0.20×104 m3和0.11×104 m3;与射孔完井相比,无水采油期延长了17.88 d,累计产油量提高了4.48×104 m3。渤海油田某底水油藏现场试验结果表明,该分段方法能够解决水平井底水锥进问题,提高累计产油量。该分段方法进一步丰富了水平井控水完井分段理论,为水平井AICD控水完井技术的推广应用提供了支撑。
Abstract:Currently, the application of segregated completion technology in horizontal wells mainly relies on field experience, and an ideal segregated method has not yet been developed, which limits the application of water controls in completion. To extend the water-free production period and increase the cumulative oil production, a segregated completion method which involved water control in horizontal wells has been propose. This method is based on ordered clustering and combination with the distribution of inflow profile in horizontal wells. By means of an analysis using simulations, it is found that for a heterogeneous bottom-water reservoir with an assumed flow rate of 2000 m3/d in the horizontal wells that water free production period can be extended by 0.86 days, 1.76 days less compared with AICD completion programs. This calculation was based on uniform segregated method and the segregated method from logging permeability. After implementing the changes, the cumulative oil production increased by 0.20×104 m3 and 0.11×104 m3, respectively. Compared with perforation completion, the water free production period extended by 17.88 days and cumulative oil production increased by 4.48×104 m3. The field test results of a bottom water reservoir in the Bohai Oilfield show that the segregated method can effectively solve the problem of water coning in horizontal wells and improve cumulative oil production. This method further enriches the segmentation theory of water control completion in horizontal wells, and provides theoretical support in the application of water control completion using AICD in horizontal wells.
-
-
表 1 最小分类损失函数
Table 1 Minimum loss function for classification
节点
序号不同分段数对应的最小分类损失函数 2 3 4 5 6 7 3 0.125(3) 4 0.145(3) 0.020(3) 5 0.145(3) 0.020(3) 0.005(4) 6 5.613(3) 0.145(6) 0.020(6) 0.005(6) 7 8.277(3) 0.165(6) 0.040(6) 0.020(7) 0.005(7) 8 9.600(3) 0.225(6) 0.100(6) 0.040(7) 0.020(8) 0.005(8) 表 2 某底水油藏的储层参数和井筒参数
Table 2 Reservoir and wellbore parameters of a certain bottom-water reservoir
参数 数值 参数 数值 油藏长度/m 2 400 地层水体积系数 1.02 油藏宽度/m 1 050 原油压缩系数/(10–7MPa–1) 3 油藏厚度/m 15 水压缩系数/(10–7MPa–1) 3 油藏顶部深度/m 2 000 岩石压缩系数/(10–7MPa–1) 4 油水界面深度/m 2 030 束缚水饱和度 0.38 油藏原始压力/MPa 21 残余油饱和度 0.24 水平渗透率/mD 1 100~
3 540井深/m 2 009 孔隙度,% 25 水平井长度/m 2 000 原油密度/(kg·m–3) 870 避水高度/m 10 地层水密度/(kg·m–3) 1 000 水平井筒直径/mm 200 原油黏度/(mPa·s) 7.0 套管外径/mm 139.7 地层水黏度/(mPa·s) 0.7 套管内径/mm 121.36 原油体积系数 1.20 套管粗糙度/mm 0.1 -
[1] 汪志明.复杂结构井完井优化理论及应用[M].北京: 石油工业出版社, 2010: 134–142. WANG Zhiming. Theory and application of well completion optimization for complex structures[M]. Beijing: Petroleum Industry Press, 2010: 134–142.
[2] 熊友明,刘理明,张林,等. 我国水平井完井技术现状与发展建议[J]. 石油钻探技术, 2012, 40(1): 1–6. doi: 10.3969/j.issn.1001-0890.2012.01.001 XIONG Youming, LIU Liming, ZHANG Lin, et al. Present status and development comments on horizontal well completion techniques in China[J]. Petroleum Drilling Techniques, 2012, 40(1): 1–6. doi: 10.3969/j.issn.1001-0890.2012.01.001
[3] 赵勇,杨海波,何苏荣. 胜利低渗油田水平井筛管分段控流完井技术[J]. 石油钻探技术, 2012, 40(3): 18–22. doi: 10.3969/j.issn.1001-0890.2012.03.004 ZHAO Yong, YANG Haibo, HE Surong. Well completion technique with screen pipe controlling flow by segments in horizontal well of low permeability reservoirs in Shengli Oilfield[J]. Petroleum Drilling Techniques, 2012, 40(3): 18–22. doi: 10.3969/j.issn.1001-0890.2012.03.004
[4] BIRCHENKO V M, BEJAN A I, USNICH A V, et al. Application of inflow control devices to heterogeneous reservoirs[J]. Journal of Petroleum Science and Engineering, 2011, 78(2): 534–541. doi: 10.1016/j.petrol.2011.06.022
[5] 曾泉树,汪志明,王小秋,等. 一种新型AICD的设计及其数值模拟[J]. 石油钻采工艺, 2015, 37(2): 101–106. ZENG Quanshu, WANG Zhiming, WANG Xiaoqiu, et al. A new type design of AICD and its numerical simulation[J]. Oil Drilling & Production Technology, 2015, 37(2): 101–106.
[6] WANG Zhiming, WEI Jianguang, JIN Hui. Partition perforation optimization for horizontal wells based on genetic algorithms[J]. SPE Drilling & Completion, 2011, 26(1): 52–59.
[7] 汪志明,徐静,王小秋,等. 水平井两相流变密度射孔模型研究[J]. 石油大学学报(自然科学版), 2005, 29(3): 65–69. WANG Zhiming, XU Jing, WANG Xiaoqiu, et al. Study on variable density perforating model of two-phase flow in horizontal wells[J]. Journal of the University of Petroleum, China (Edition of Natural Science), 2005, 29(3): 65–69.
[8] 张林,蒲军宏,邹磊,等. 关于水平井合理分段优化研究[J]. 天然气地球科学, 2012, 23(2): 370–374. ZHANG Lin, PU Junhong, ZOU Lei, et al. Optimization of open intervals of selectively completed horizontal wells[J]. Natural Gas Geoscience, 2012, 23(2): 370–374.
[9] 易勇刚,张传新,于会永,等. 新疆油田水平井分段完井注汽技术[J]. 石油钻探技术, 2012, 40(6): 79–83. doi: 10.3969/j.issn.1001-0890.2012.06.017 YI Yonggang, ZHANG Chuanxin, YU Huiyong, et al. Segregated completion and subsection steam injection for horizontal wells in Xinjiang Oilfield[J]. Petroleum Drilling Techniques, 2012, 40(6): 79–83. doi: 10.3969/j.issn.1001-0890.2012.06.017
[10] TODMAN S, WOOD G, JACKSON M D. Modelling and optimizing inflow control devices[R]. SPE 188012, 2017.
[11] LUO Wei, LI Haitao, WANG Yongqing, et al. A new semi-analytical model for predicting the performance of horizontal wells completed by inflow control devices in bottom-water reservoirs[J]. Journal of Natural Gas Science and Engineering, 2015, 27: 1328–1339. doi: 10.1016/j.jngse.2015.03.001
[12] WANG Jing, LIU Huiqing, LIU Yongge, et al. Mechanism and sensitivity analysis of an inflow control devices (ICDs) for reducing water production in heterogeneous oil reservoir with bottom water[J]. Journal of Petroleum Science and Engineering, 2016, 146: 971–982. doi: 10.1016/j.petrol.2016.08.007
[13] 安永生,张宁,张恒. 水平井ICD控水完井一体化耦合数值模拟研究[J]. 中国海上油气, 2017, 29(2): 109–113. AN Yongsheng, ZHANG Ning, ZHANG Heng. Numerical simulation study on the coupling of horizontal wells with ICD water control completion[J]. China Offshore Oil and Gas, 2017, 29(2): 109–113.
[14] 孙荣华,陈阳,王绍先,等. 水平井分段控流完井技术应用效果评价方法[J]. SUN Ronghua, CHEN Yang, WANG Shaoxian, et al. Evaluating the application effect for staged fluid control completion technology in horizontal wells[J doi: doi:10.11911/syztjs.2019089 [15] ZHANG Rui, LI Yinghao, YANG Bin, et al. A segmenting method of long horizontal wellbore for staged sand control completion based on multi-dimension sequential clustering[J]. Journal of Petroleum Science and Engineering, 2019, 172: 1215–1225.
[16] FISHER W D. On grouping for maximum homogeneity[J]. Journal of the American Statistical Association, 1958, 53(284): 789–798. doi: 10.1080/01621459.1958.10501479
[17] 李文婧,孙锋,李茜瑶,等. 采用递归有序聚类的信号控制时段划分方法[J]. 浙江大学学报(工学版), 2018, 52(6): 1150–1156. doi: 10.3785/j.issn.1008-973X.2018.06.014 LI Wenjing, SUN Feng, LI Xiyao, et al. Time-of-day breakpoints for traffic signal control using dynamic recurrence order clustering[J]. Journal of Zhejiang University (Engineering Science), 2018, 52(6): 1150–1156. doi: 10.3785/j.issn.1008-973X.2018.06.014
[18] 中国石油大学(华东).一种兼顾控水和防砂的水平井分段设计方法: CN201810141451.5[P].2018-02-11. China University of Petroleum (East China). A segmenting method of horizontal well considering water control and sand control: CN201810141451.5[P].2018-02-11.