Intelligent Drilling Technology Research Status and Development Trends
-
摘要:
随着油气勘探开发逐渐向非常规、低渗透、深层、深水等复杂油气领域发展,钻井工程在安全、经济和效率等方面面临一系列难题和挑战。基于大数据和人工智能等前沿技术的智能钻井技术,有望实现钻井过程的超前探测、智能导向、闭环控制和智能决策,从而大幅提高油气井产量和采收率,降低钻井成本,近年来已成为国内外研究热点。详细介绍了国内外智能钻井关键技术的发展现状,包括井眼轨道智能优化、钻速智能优化、智能导向钻井、井下闭环调控、智能监测与决策等技术,并分析了国内外智能钻机、智能钻杆、智能钻头、智能控压钻井系统和智能导向钻井系统等装备的主要进展,指出基于我国人工智能技术的高速发展,需要加强钻井工程与前沿理论、技术的跨界融合,强化协同创新,建立完善的智能钻井理论与技术体系,为实现我国复杂油气资源高效勘探开发和油气发展战略提供技术支撑。
Abstract:As oil and gas exploration and development shift to unconventional, low permeability, deep formations, deepwater and other complex hydrocarbon resources, drilling engineering is facing a series of difficulties and challenges in terms of safety, economics and efficiency. Centering around cutting-edge technologies such as big data and artificial intelligence, intelligent drilling technology is expected to be able to incorporate advanced detection, intelligent steering, closed-loop control and intelligent decision-making in the drilling process, thereby greatly increasing the productivity and oil and gas recovery ratio and reducing drilling costs. In recent years, intelligent drilling technology is absolutely cutting edge, as both the frontier and the key hotspot of research worldwide. In this paper, we introduced in detail the development status of key engineering technologies in intelligent drilling, including the intelligent optimization of borehole trajectory and drilling speed, intelligent steering, downhole closed-loop control, intelligent monitoring and decision-making, etc. The principle breakthroughsin intelligent drilling equipment such as smart drilling rig, drill pipe, drill bit, intelligent pressure management drilling system and intelligent steering drilling system were analyzed. Due to the rapid development of artificial intelligence technology in China, it is necessary to strengthen the cross-border integration of drilling engineering and cutting-edge theory/technology, to enhance collaborative inno-vation and to establish a comprehensive intelligent drilling technology system, so as to provide technical supports in the efficient exploration and development of complex oil and gas resources as well as in the strategies of oil and gas development in China.
-
Keywords:
- intelligent drilling /
- drilling equipment /
- technical status /
- development trends
-
沁南区域煤层气主力储层15号煤层具有割理及微孔发育、煤层易破碎的特点,进行水平井钻井时外来流体易侵入煤层,引起煤层井壁坍塌和储层伤害[1-2]。国内煤层气水平井钻井使用的钻井液主要为清洁盐水和聚合物钻井液。清洁盐水具有良好的保护储层能力,但沁南区域水平井段长,15号煤层易破碎、坍塌,使用清洁盐水钻井风险高[3-4]。聚合物钻井液具有稳定煤层井壁的能力,完钻后可破胶解堵,但沁南区域15号煤层温度低,氧化破胶剂普遍存在低温破胶困难,破胶后残渣含量高,且聚合物钻井液储存条件苛刻,对环境、人员不友好等问题,导致其应用受限[5-7]。目前使用的钻井液无法完全满足沁南区域15号煤层水平井钻井对稳定井壁、低温破胶和保护储层的需求。
瓜尔胶具有低温易破胶,破胶后残渣含量低的优点,生物酶破胶剂具有破胶专一、易低温破胶的优点;但瓜尔胶一般用作压裂增稠剂,生物酶破胶剂也常用于压裂破胶和废弃物生物降解[8-10]。国内外学者对瓜尔胶钻井液鲜有研究,研究范围也仅限于降解性能、流变性能等方面的室内评价[11-13],尚未系统性研究低温、易塌煤层气水平井钻井施工对其稳定井壁、低温破胶和保护储层等方面的性能需求。因此,将瓜尔胶引入钻井液中作为增黏剂,并与生物酶破胶剂配套使用,开展了瓜尔胶加量优化和生物酶破胶剂优选,评价了瓜尔胶钻井液稳定煤层和保护储层的性能。瓜尔胶钻井液在保留聚合物钻井液性能的基础上,可实现低温破胶,达到稳定井壁与保护储层的目的[14-16]。
1. 15号煤层特征及钻井技术难点
沁南区域石炭系太原组的15号煤层孔隙度4.75%~5.75%,渗透率0.26~0.85 mD;裂隙较3号煤层更为发育,且具有破碎结构和原生结构共存的特点,普遍具有丰富的割理和裂隙,微裂缝较多,多呈平形状、不规则网状、丝状和树枝状成组出现;孔隙普遍被矿物充填,矿物种类较多,包括黏土矿物、黄铁矿、石英和方解石等。15号煤层的上述特征除造成储层连通性较差外,较多的割理和裂隙也导致15号煤层的力学性能较差,与3号煤层相比更容易坍塌[17-18]。
以15号煤层为目的层的煤层气水平井,水平段长800~1 000 m,储层温度30~40 ℃,煤层压力系数0.20~0.60。该区块使用清洁盐水钻进15号煤层,水平钻进时间超过1 d后,煤层普遍存在坍塌,造成钻井失败。使用常规聚合物钻井液钻进时,虽能保证煤层井壁稳定,但储层温度较低造成破胶困难,投产后存在产气量低的问题。保证煤层长水平段井壁稳定、降低聚合物钻井液对煤层的伤害和保证侵入煤层的钻井液可破胶返排,是沁南区域15号煤层水平井钻井的技术难点[19]。
2. 瓜尔胶钻井液及破胶液研究
2.1 瓜尔胶钻井液的配方
根据上文所述15号煤层水平井的钻井技术难点及施工经验,保持钻井液的黏度可维持煤层稳定,基于15号煤层孔渗低、连通性较差的特点,要求钻井液的滤失量不高于20 mL,以满足钻井施工要求。设计钻井液组成为清水+增黏剂+降滤失剂+辅助添加剂。
2.1.1 瓜尔胶加量优化
从保护储层角度讲,瓜尔胶加量越小,残渣含量就越低,储层保护效果就越好。但为保证水平井井眼清洁和井壁稳定需求,钻井液要维持一定的黏度,根据该区块水平井的钻井经验可知,钻井液漏斗黏度为40~50 s时可满足水平井井眼清洁和稳定井壁需求。选取淡水基压裂液使用的羟丙基瓜尔胶作为钻井液增黏剂,测试清水加入不同量瓜尔胶后的漏斗黏度,以优化瓜尔胶的加量。瓜尔胶为江苏昆山某厂生产的羟丙基瓜尔胶,测试结果见图1。
由图1可知:随着瓜尔胶加量增大,溶液的漏斗黏度持续升高;瓜尔胶加量达到0.5%时,溶液的漏斗黏度为43 s;瓜尔胶加量达到0.6%时,溶液的漏斗黏度为52 s,可以满足水平井施工对钻井液黏度的要求。现场施工时,瓜尔胶加量可根据实际情况在0.5%~0.6%间选择。
2.1.2 瓜尔胶耐盐性能评价
该区块要求钻井液密度为1.00~1.10 kg/L,以KCl为钻井液密度调节剂。测试瓜尔胶钻井液中加入不同量KCl后的漏斗黏度,以评价瓜尔胶的耐盐性能。瓜尔胶钻井液配方为清水+0.6%瓜尔胶,测试结果见图2。
由图2可知:随着KCl加量增大,瓜尔胶钻井液密度呈上升趋势,漏斗黏度呈略微下降趋势;KCl加量为16%时,瓜尔胶钻井液的密度达到1.10 kg/L,漏斗黏度降为45 s。总体来看,瓜尔胶钻井液的漏斗黏度稳定在52~45 s,在现场对钻井液漏斗黏度要求范围内,能够满足现场钻井要求。
2.1.3 瓜尔胶钻井液配方确定
为保证钻井液的其他性能,选用可降解的淀粉为降滤失剂,改性矿物油为润滑剂,KCl为密度调节剂,以维持钻井液的整体性能,形成了瓜尔胶钻井液配方:清水+0.5%瓜尔胶+0.3%改性淀粉+5.0%KCl +1.5%润滑剂。其基本性能:漏斗黏度45 s,表观黏度25 mPa·s,塑性黏度14 mPa·s,动切力11 Pa,动塑比0.78,静切力6/8 Pa,API滤失量13.2 mL,滤饼厚度0.05 mm,pH值9.0,润滑系数0.09。
该钻井液黏度适中,动切力和动塑比较高,能够满足水平井井眼清洁需求;润滑系数为0.09,且滤饼较薄,能够满足水平井施工对钻井液润滑性能的要求。钻井液基本性能在设计范围内,可满足煤层气水平井钻井需求。
2.2 生物酶破胶液
为确保瓜尔胶钻井液的储层保护性能,完钻后需使用破胶液对其破胶。为此,优选了在低温下可实现瓜尔胶钻井液降解破胶的生物酶破胶剂,同时在破胶液中加入助排剂,以实现破胶后顺利返排。设计破胶液组成为清水+生物酶破胶剂+助排剂。
2.2.1 生物酶破胶剂优选
为解除瓜尔胶等聚合物对煤层的伤害,需要在完钻后对其破胶以解除伤害。参照《水基压裂液性能评价方法》(SY/T 5107—2016)中的破胶性能评价方法,在瓜尔胶钻井液中加入不同种类和不同量的破胶剂,在30 ℃的水浴中加热12 h后,使用六速旋转黏度计测试其在100 r/min(剪切速率为170 s−1)转速下的表观黏度,并测试钻井液破胶后的残渣含量(表观黏度低于3 mPa·s时视为完全破胶),结果见表1。 Ⅰ型生物酶破胶剂为胍胶糖苷特异性水解酶和淀粉糖苷特异性水解酶的复配产品,Ⅱ型生物酶破胶剂为胍胶糖苷特异性水解酶。
表 1 不同种类破胶剂的破胶效果Table 1. Gel breaking effect of different breakers破胶剂类型 破胶剂及加量 表观黏度/(mPa·s) 残渣含量/(mg·L−1) 空白样 49.0 未破胶 氧化破胶剂 0.30%过硫酸铵 21.0 未破胶 0.70%过硫酸铵 21.0 未破胶 0.10%次氯酸钙 4.5 未破胶 0.20%次氯酸钙 3.0 590 复合生物酶 0.02%Ⅰ型生物酶破胶剂 15.0 未破胶 0.05%Ⅰ型生物酶破胶剂 4.5 115 0.08%Ⅰ型生物酶破胶剂 4.5 108 0.10%Ⅰ型生物酶破胶剂 3.0 120 单一生物酶 0.02%Ⅱ型生物酶破胶剂 6.0 未破胶 0.05%Ⅱ型生物酶破胶剂 4.5 240 0.08%Ⅱ型生物酶破胶剂 3.0 251 由表1可知:在30 ℃温度下,瓜尔胶钻井液中加入过硫酸铵养护12 h,不能破胶;加入次氯酸钙虽能破胶,但次氯酸钙属于危险化学品,使用局限性较大;加入0.1%Ⅰ型生物酶破胶剂和0.08%Ⅱ型生物酶破胶剂时,瓜尔胶钻井液的黏度均降至3.0 mPa·s,表明瓜尔胶钻井液完全破胶。残渣含量越低,对储层的伤害也就越低,瓜尔胶钻井液加入次氯酸钙、Ⅰ型生物酶破胶剂和Ⅱ型生物酶破胶剂破胶后的残渣含量分别为590,120和251 mg/L。综合考虑破胶剂的加量和破胶后的残渣含量,选择Ⅰ型生物酶破胶剂作为瓜尔胶钻井液的破胶剂,加量应不低于0.1%。
2.2.2 助排剂加量优化
对于煤层气井,表面张力是影响破胶液返排的最重要因素之一,基于助排剂性价比和有效降低表面张力的原则,选择氟碳型表面活性剂为助排剂,以利于钻井液滤液和破胶后钻井液的返排。参照《压裂液通用技术条件》(SY/T 6376—2008)中的相关规定,破胶液的表面张力不大于28 mN/m时可满足返排要求。
破胶液加入不同量的助排剂,使用TX500™型旋转滴超低界面张力仪测试其表面张力,根据测试结果优化助排剂加量。破胶液的配方为清水+0.1%Ⅰ型生物酶破胶剂,试验结果见表2。
表 2 破胶液加入不同量助排剂后的表面张力Table 2. Surface tension of gel breaking fluid at different cleanup additive dosages助排剂加量,% 表面张力/(mN·m−1) 降低率,% 0 65 0.1 35 46.15 0.2 28 56.92 0.3 18 72.31 0.4 12 81.54 由表2可知:随着助排剂加量增大,破胶液的表面张力不断降低;助排剂加量为0.2%时,破胶液的表面张力为28 mN/m;助排剂加量为0.3%时,破胶液的表面张力为18 mN/m。因此,助排剂的最优加量为0.2%~0.3%。
3. 稳定井壁和储层保护性能评价
为了验证瓜尔胶钻井液维持煤层井壁稳定的能力和对煤层的保护效果,评价了瓜尔胶钻井液的相关性能,并与现场使用的清洁盐水、常规聚合物钻井液进行了对比。
3.1 煤层井壁稳定性能评价
取数块同一煤块上钻取的岩心(煤块取自15号煤层矿井,埋深约800 m)进行抗压强度试验。将煤岩岩心在不同钻井液中加压5 MPa浸泡24 h后,使用TAW-1000型岩石三轴试验机测试其单轴抗压强度,每种钻井液浸泡2块岩心作为平行样,利用抗压强度表征钻井液对煤层井壁的稳定效果(见图3)。瓜尔胶钻井液配方与2.1.3节相同,常规聚合物钻井液配方为清水+0.4%黄原胶+0.3%PAC-LV+5.0%KCl。
由图3可知,煤岩经8%KCl盐水浸泡后,抗压强度的下降幅度最大,经常规聚合物钻井液和瓜尔胶钻井液浸泡后,抗压强度的下降幅度相当。浸泡过程中,盐水易沿煤岩割理侵入煤岩内部,造成煤岩抗压强度降低;瓜尔胶钻井液和常规聚合物钻井液侵入煤岩的速度和总滤失量远低于盐水,抗压强度的下降幅度也最小。瓜尔胶钻井液稳定煤层井壁的效果与常规聚合物钻井液相当。
3.2 储层保护性能评价
针对不同类型钻井液,使用JHDS-Ⅲ型高温高压动态失水试验仪和KDY-50型岩心流动试验装置进行钻井液对煤层的保护性能试验。首先,用地层水饱和待测煤岩岩样,用氮气测试煤岩岩样在束缚水饱和度下的初始渗透率;然后,在压差3.5 MPa条件下用钻井液污染煤岩岩样,再用2倍孔隙体积的破胶液反向驱替,测试破胶液驱替后煤岩岩样在束缚水饱和度下的气测渗透率,计算渗透率恢复率。试验用钻井液配方同2.3.1节,试验结果见表3。
表 3 煤岩渗透率损害试验结果Table 3. Permeability damage test results of coal rock煤岩
编号污染工作液 气测渗透率/mD 气测渗透率
恢复率,%束缚水饱和度,% 污染前 污染后 QS-2-4 8%KCl盐水 0.22 0.20 87.50 54.71 QS-2-5 常规聚合物钻井液+破胶液 0.21 0.10 47.86 63.25 QS-2-6 瓜尔胶钻井液+破胶液 0.55 0.47 85.16 58.24 QS-2-9 瓜尔胶钻井液+破胶液 0.34 0.29 85.08 54.50 由表3可知,常规聚合物钻井液在破胶后对煤岩的伤害率依然在50%以上,而清洁盐水和瓜尔胶钻井液对煤岩的伤害率都较小。瓜尔胶钻井液破胶后煤岩的渗透率恢复率在85%以上,略低于清洁盐水,表现出良好的储层保护效果。
4. 现场应用
目前,沁南区域15号煤层使用瓜尔胶钻井液钻的井年均达20口以上,解决了清洁盐水不能稳定煤层井壁和常规聚合物钻井液存在储层伤害的问题。与使用清洁盐水的井相比,使用瓜尔胶钻井液的5口水平井未发生井下故障,平均钻井周期缩短了32.1%,平均井径扩大率从21.4%降至13.3%,单井日产气量同比提高15.0%~25.0%。下面以PZ*E4-4H井为例介绍瓜尔胶钻井液的应用情况。
PZ*E4-4H井为单分支水平井,主要目的层为15号煤层,完钻井深1 650 m,最大井斜角105°,水平段长1 046 m,纯煤层进尺838 m,煤层钻遇率80.11%,钻井周期16.90 d,水平段钻井周期8.35 d。
该井水平段采用瓜尔胶钻井液钻进,按上文配方配制瓜尔胶钻井液,将其漏斗黏度调整至45 s左右开钻。钻进过程中补充瓜尔胶胶液,维持钻井液黏度;间歇开启离心机,以清除有害固相,并将钻井液密度维持在1.03~1.07 kg/L;根据定向托压及扭矩变化情况适时加入润滑剂,每钻进100 m使用漏斗黏度100 s左右的稠浆清扫井眼。该井15号煤层厚度较薄,水平段多次钻遇煤层顶底板的泥岩地层,但瓜尔胶钻井液性能稳定,钻进期间仅有少量掉块,未发生阻卡等井下故障,瓜尔胶钻井液表现出良好的稳定煤层井壁的效果,且其黏度、密度和滤失量等性能参数与常规聚合物钻井液相当。
该井下入玻璃钢筛管后,挤注生物酶破胶液破胶,以解除瓜尔胶钻井液的污染,投产后日产气量达2.5×104 m3;与使用常规聚合物钻井液的煤层气水平井相比(水平段长度和煤层钻遇率相似),单井产能从2.0×104 m3提高至2.5×104 m3以上,瓜尔胶钻井液表现出良好的储层保护效果。
5. 结 论
1)针对沁南区域15号煤层水平井钻井施工要求,通过优化瓜尔胶加量和瓜尔胶的耐盐性能,将瓜尔胶与其他处理机复配形成了瓜尔胶钻井液。该钻井液与清洁盐水相比可有效提高煤层的抗压强度,与常规聚合物钻井液相比可实现低温破胶,破胶后残渣含量低,储层保护效果好。
2)基于沁南区域15号煤层的地质特征和钻井需求研究的瓜尔胶钻井液,并未对其滤失量做要求,但对滤失量要求严格的煤层气钻井,还需系统性研究可生物降解的降滤失剂。
3)瓜尔胶钻井液在沁南区域15号煤层水平井钻井中表现出了良好的稳定井壁和保护储层的效果,可在储层温度低、井壁易失稳、储层易伤害的煤层气水平井中推广应用。
-
-
[1] 胡文瑞. 地质工程一体化是实现复杂油气藏效益勘探开发的必由之路[J]. 中国石油勘探, 2017, 22(1): 1–5. doi: 10.3969/j.issn.1672-7703.2017.01.001 HU Wenrui. Geology-engineering integration: a necessary way to realize profitable exploration and development of complex reservoirs[J]. China Petroleum Exploration, 2017, 22(1): 1–5. doi: 10.3969/j.issn.1672-7703.2017.01.001
[2] LEE J, PARK C, KANG J M, et al. Horizontal well design incorporated with interwell interference, drilling location, and trajectory for the recovery optimization[R]. SPE 125539, 2009.
[3] VLEMMIX S, JOOSTEN G J P, BROUWER R, et al. Adjoint-based well trajectory optimization[R]. SPE 121891, 2009.
[4] MORALES A N, NASRABADI H, ZHU D. A modified genetic algorithm for horizontal well placement optimization in gas condensate reservoirs[R]. SPE 135182, 2010.
[5] LYU Z, SONG X, GENG L, et. al Optimization of multilateral well configuration in fractured reservoirs[J]. Journal of Petroleum Science and Engineering, 2019, 172: 1153–1164. doi: 10.1016/j.petrol.2018.09.024
[6] HEGDE C, GRAY K. Evaluation of coupled machine learning models for drilling optimization[J]. Journal of Natural Gas Science and Engineering, 2018, 56: 397–407. doi: 10.1016/j.jngse.2018.06.006
[7] ARABJAMALOEI R, SHADIZADEH S. Modeling and optimizing rate of penetration using intelligent systems in an Iranian southern oil field (Ahwaz Oil Field)[J]. Petroleum Science and Technology, 2011, 29(16): 1637–1648. doi: 10.1080/10916460902882818
[8] BATAEE M, MOHSENI S. Application of artificial intelligent systems in ROP optimization: a case study[R]. SPE 140029, 2011
[9] LIAO X, KHANDELWAL M, YANG H, et al. Effects of a proper feature selection on prediction and optimization of drilling rate using intelligent techniques[J/OL]. Engineering with Computers, 2019:1–12[2019–08–15]. https://doi.org/10.1007/s00366-019-00711-6.
[10] GAN C, CAO W, WU M, et al. Two-level intelligent modeling method for the rate of penetration in complex geological drilling process[J]. Applied Soft Computing, 2019, 80: 592–602. doi: 10.1016/j.asoc.2019.04.020
[11] CUI M, WANG G H, GE H Y, et al. Maximizing drilling performance with real-time drilling vibration mitigation in the deep wells[R]. SPE 181003, 2016.
[12] ZHAO F, WANG H, CUI M. Optimizating drilling operating parameters with real-time surveillance and mitigation system of downhole vibration in deep wells[R]. SPE 180661, 2016.
[13] SUGIURA J, BOWLER A, HAWKINS R, et al. Downhole steering automation and new survey measurement method significantly improves high-dogleg rotary-steerable system performance[R]. SPE 166165, 2013.
[14] ZHANG C, ZOU W, CHENG N, et al. Trajectory tracking control for rotary steerable systems using interval type-2 fuzzy logic and reinforcement learning[J]. Journal of the Franklin Institute, 2018, 355(2): 803–826. doi: 10.1016/j.jfranklin.2017.12.001
[15] SONG X, VADALI M, XUE Y, et al. Tracking control of rotary steerable toolface in directional drilling: IEEE International Conference on Advanced Intelligent Mechatronics (AIM)[R/OL]. [2019–08–15]. https://doi.org/10.1109/AIM.2016.7576935.
[16] KULLAWAN K, BRATVOLD R B, NIETO C M. Decision-oriented geosteering and the value of look-ahead information: a case-based study[J]. SPE Journal, 2017, 22(3): 767–782. doi: 10.2118/184392-PA
[17] KAMEL M A, ELKATATNY S, MYSOREWALA M F, et al. Adaptive and real-time optimal control of stick-slip and bit wear in autonomous rotary steerable drilling[J]. Journal of Energy Resources Technology, Transactions of the ASME, 2018, 140(3): 1–12.
[18] ABDULGALIL F, SIGUERDIDJANE H. PID based on sliding mode control for rotary drilling system[C/OL]//EUROCON 2005—The International Conference on “Computer as a Tool”. [2019–08–15]. https://doi.org/10.1109/EURCON.2005.1629911
[19] HUO A, HE Y, WANG Y, et al. Research of disc valve friction torque modeling and integral sliding mode adaptive control for rotary steering drilling tool: 2010 2nd International Conference on Computer Engineering and Technology[C/OL]. [2019–08–15]. https://doi.org/10.1109/ICCET.2010.5485370.
[20] MATHEUS J, IGNOVA M, HORNBLOWER P. A hybrid approach to closed-loop directional drilling control using rotary steerable systems[J]. IFAC Proceedings Volumes, 2012, 45(8): 84–89. doi: 10.3182/20120531-2-NO-4020.00008
[21] 牛海峰, 蒋世全, 李汉兴, 等.旋转导向钻井工具井下闭环控制技术研究[C]//2011年度钻井技术研讨会暨第十一届石油钻井院所长会议论文集.北京: 石油工业出版社, 2011. NIU Haifeng, JIANG Shiquan, LI Hanxing, et al. Study on downhole closed-loop control technology of rotary steerable drilling tool[C]//Drilling Technology Seminar and Conference of Petroleum Drilling Institute. Beijing: Petroleum Industry Press, 2011.
[22] 李远志.新型静态偏置指向式旋转导向执行机构导向控制研究[D].天津: 天津大学, 2013. LI Yuanzhi. Steering control research on a new steering mechanism for static point-the-bit rotary steerable system[D]. Tianjin: Tianjin University, 2013.
[23] GARNER L, VACIK L, LIVESCU S, et al. Operational improvements with the expansion of an intelligent coiled tubing system to include real-time tension, compression, and torque data moni-toring[R]. SPE 179101, 2016.
[24] CORSER G P, HARMSE J E, CORSER B A, et al. Field test results for a real-time intelligent drilling monitor[R]. SPE 59227, 2000.
[25] 廖明燕.钻井过程实时状态监测与诊断技术研究[D].东营: 中国石油大学(华东), 2010. LIAO Mingyan. Real-time drilling process state monitoring and diagnosis[D]. Dongying: China University of Petroleum, 2010.
[26] 李浩.面向钻井现场监测的无线传感器网络传输信道建模与分析[D].武汉: 湖北工业大学, 2015. LI Hao. Transmission channel modeling and analysis of wireless sensor network for drilling site monitoring[D]. Wuhan: Hubei University of Technology, 2015.
[27] SVENSSON I, SAEVERHAGEN E, BOUILLOUTA F M. Driving rig performance through real-time data analysis, benchmarking, dashboards and developed key performance indicators[R]. SPE 173413, 2015.
[28] BAAZIZ A, QUONIAM L. How to use big data technologies to optimize operations in upstream petroleum industry[J]. International Journal of Innovation, 2014, 1(1): 19–25.
[29] 李琪,徐英卓. 基于数据仓库的钻井工程智能决策支持系统研究[J]. 石油学报, 2003, 24(4): 77–80. doi: 10.3321/j.issn:0253-2697.2003.04.018 LI Qi, XU Yingzhuo. Intelligent decision support system based on data warehouse for drilling engineering[J]. Acta Petrolei Sinica, 2003, 24(4): 77–80. doi: 10.3321/j.issn:0253-2697.2003.04.018
[30] 高晓荣,徐英卓,李琪. 基于CBR的井下复杂情况与事故智能诊断和处理系统[J]. 计算机应用研究, 2008, 25(5): 1446–1449. doi: 10.3969/j.issn.1001-3695.2008.05.049 GAO Xiaorong, XU Yingzhuo, LI Qi. Intelligent diagnosis and process system case-based reasoning for drilling complex circs and accident[J]. Application Research of Computers, 2008, 25(5): 1446–1449. doi: 10.3969/j.issn.1001-3695.2008.05.049
[31] 杨红满,卢世浩,徐高军,等. 西北油田智能监测溢流预警系统建立与应用效果评价[J]. 化工设计通讯, 2017, 43(7): 90–92. doi: 10.3969/j.issn.1003-6490.2017.07.085 YANG Hongman, LU Shihao, XU Gaojun, et al. Establishment and application of intelligent monitoring overflow warning system in northwest oilfield[J]. Chemical Engineering Design Communications, 2017, 43(7): 90–92. doi: 10.3969/j.issn.1003-6490.2017.07.085
[32] 王以法. 人工智能钻井系统展望[J]. 石油钻探技术, 2000, 28(2): 36–38. doi: 10.3969/j.issn.1001-0890.2000.02.014 WANG Yifa. Prospect of artificial intelligence on drilling system[J]. Petroleum Drilling Techniques, 2000, 28(2): 36–38. doi: 10.3969/j.issn.1001-0890.2000.02.014
[33] 唐丽华,王洪英. 国外几种典型的新型自动化钻机[J]. 石油机械, 2005, 33(11): 78–80. doi: 10.3969/j.issn.1001-4578.2005.11.026 TANG Lihua, WANG Hongying. Several typical new types of foreign automated drilling rigs[J]. China Petroleum Machinery, 2005, 33(11): 78–80. doi: 10.3969/j.issn.1001-4578.2005.11.026
[34] REID D. The development of automated drilling rigs[R]. SPE 39373, 1998.
[35] DUNN M D, ARCHEY P J, OPSTAD E A, et al. Design, specification, and construction of a light, automated drilling system (LADS)[R]. SPE 74451, 2002.
[36] 张鹏飞,朱永庆,张青锋,等. 石油钻机自动化、智能化技术研究和发展建议[J]. 石油机械, 2015, 43(10): 13–17. ZHANG Pengfei, ZHU Yongqing, ZHANG Qingfeng, et al. Research and development of automatic and intelligent technologies for drilling rig[J]. China Petroleum Machinery, 2015, 43(10): 13–17.
[37] SMITH N, TONNESSEN L, BAUMANN U, et al. Novel machinery[M]// KLAUS B, RAINER K. Compression machinery for oil and gas. Cambridge MA: Gulf Professional Publishing, 2019: 543–567.
[38] 袁鹏斌,欧阳志英,余荣华. 智能钻杆研究现状及海隆电导通钻杆的试制[J]. 焊管, 2010, 33(6): 36–39. doi: 10.3969/j.issn.1001-3938.2010.06.008 YUAN Pengbin, OUYANG Zhiying, YU Ronghua. The current research status of intelligent drill pipe and trial-production of hailong's electrical conductance pass drill pipe[J]. Welded Pipe and Tube, 2010, 33(6): 36–39. doi: 10.3969/j.issn.1001-3938.2010.06.008
[39] 杨金华,朱桂清,张焕芝,等. 值得关注的国际石油工程前沿技术(Ⅰ)[J]. 石油科技论坛, 2012, 31(4): 43–50. doi: 10.3969/j.issn.1002-302x.2012.04.013 YANG Jinhua, ZHU Guiqing, ZHANG Huanzhi, et al. Noteworthy advanced international petroleum engineering technology(Ⅰ)[J]. Oil Forum, 2012, 31(4): 43–50. doi: 10.3969/j.issn.1002-302x.2012.04.013
[40] JELLISON M J, HALL D R, HOWARD D C, et al. Telemetry drill pipe: enabling technology for the downhole internet[R]. SPE 79885, 2003.
[41] JELLISON M J, HALL D R. Intelligent drill pipe creates the drilling network[R]. SPE 80454, 2003.
[42] 石崇东,张绍槐. 智能钻柱设计方案及其应用[J]. 石油钻探技术, 2004, 32(6): 7–10. doi: 10.3969/j.issn.1001-0890.2004.06.003 SHI Chongdong, ZHANG Shaohuai. Scheme design and application of intelligent drill string[J]. Petroleum Drilling Techniques, 2004, 32(6): 7–10. doi: 10.3969/j.issn.1001-0890.2004.06.003
[43] 刘选朝,张绍槐. 智能钻柱信息及电力传输系统的研究[J]. 石油钻探技术, 2006, 34(5): 10–13. doi: 10.3969/j.issn.1001-0890.2006.05.003 LIU Xuanchao, ZHANG Shaohuai. Study on information and power transmission based on an intelligent drill string[J]. Petroleum Drilling Techniques, 2006, 34(5): 10–13. doi: 10.3969/j.issn.1001-0890.2006.05.003
[44] 郭永峰.挪威公司推出自动优选层位的智能钻杆井下取芯工具[J].中国石油企业, 2019(增刊1): 86. GUO Yongfeng. Norwegian company launches intelligent drill pipe downhole coring tool with automatic preferred horizon [J]. China Petroleum Enterprise, 2019(supplement1): 86.
[45] 胡永建,王岚. 基于线性仿真的高频磁耦合有缆钻杆信道建模[J]. 石油钻探技术, 2019, 47(2): 120–126. doi: 10.11911/syztjs.2019050 HU Yongjian, WANG Lan. Modeling high-frequency magnetic coupling wired drill pipe channel based on linear simulation[J]. Petroleum Drilling Techniques, 2019, 47(2): 120–126. doi: 10.11911/syztjs.2019050
[46] 王以法. 新型智能钻头的设计[J]. 石油学报, 2003, 24(1): 92–95. doi: 10.3321/j.issn:0253-2697.2003.01.019 WANG Yifa. A new intelligent bit design[J]. Acta Petrolei Sinica, 2003, 24(1): 92–95. doi: 10.3321/j.issn:0253-2697.2003.01.019
[47] LESEULTRE A, LAMINE E, JONSSON A. An instrumented bit: a necessary step to the intelligent BHA[R]. SPE 39341, 1998.
[48] SINOR L A, HANSEN W R, DYKSTRA M W, et al. Drill bits with controlled cutter loading and depth of cut: US6298930[P]. 2001-10-09.
[49] 兰雪梅. 贝克休斯公司发布第一款自适应钻头[J]. 天然气勘探与开发, 2017, 40(3): 127. LAN Xuemei. Baker Hughes releases its first adaptive drill bit[J]. Natural Gas Exploration and Development, 2017, 40(3): 127.
[50] 朱丽华. 哈里伯顿推出新一代CruzerTM深切削滚珠元件钻头技术[J]. 钻采工艺, 2017, 40(4): 118–118. doi: 10.3969/j.issn.1006-768X.2017.04.040 ZHU Lihua. Halliburton introduces a new generation of CruzerTM deep-cutting ball drill bit technology[J]. Drilling & Production Technology, 2017, 40(4): 118–118. doi: 10.3969/j.issn.1006-768X.2017.04.040
[51] 吴红建,郗凤亮,柯晓华. 智能控压钻井控制技术试验研究[J]. 石油天然气学报, 2013, 35(11): 150–154. doi: 10.3969/j.issn.1000-9752.2013.11.034 WU Hongjian, XI Fengliang, KE Xiaohua. Experimental study on intelligent managed pressure drilling[J]. Journal of Oil and Gas Technology, 2013, 35(11): 150–154. doi: 10.3969/j.issn.1000-9752.2013.11.034
[52] 周英操,刘伟. PCDS精细控压钻井技术新进展[J]. 石油钻探技, 2019, 47(3): 68–74. ZHOU Yingcao, LIU Wei. New progress on PCDS precise pressure management drilling technology[J]. Petroleum Drilling Techniques, 2019, 47(3): 68–74.
[53] HERNANDEZ J, PEREZ T C, GALLO Z J F, et al. Successful application of automated choke MPD system to prevent salt water kicks while drilling in a high pressure tertiary salt diapir with OBM in southern Mexico[C]. SPE 122211, 2009.
[54] 石林,杨雄文,周英操,等. 国产精细控压钻井装备在塔里木盆地的应用[J]. 天然气工业, 2012, 32(8): 6–10. doi: 10.3787/j.issn.1000-0976.2012.08.002 SHI Lin, YANG Xiongwen, ZHOU Yingcao, et al. Application of China-made precise managed pressure drilling equipment in the Tarim Basin[J]. Natural Gas Industry, 2012, 32(8): 6–10. doi: 10.3787/j.issn.1000-0976.2012.08.002
[55] 周英操,杨雄文,方世良,等. 精细控压钻井系统研制与现场试验[J]. 石油钻探技术, 2011, 39(4): 7–12. doi: 10.3969/j.issn.1001-0890.2011.04.002 ZHOU Yingcao, YANG Xiongwen, FANG Shiliang, et al. Development and field test of PCDS-I precise managed pressure drilling system[J]. Petroleum Drilling Techniques, 2011, 39(4): 7–12. doi: 10.3969/j.issn.1001-0890.2011.04.002
[56] 大安, Tom. 一款具有高度的智能控压钻井系统[EB/OL].(2019–08–02)[2019–09–10]http://www.oilsns.com/article/413800. Daan, Tom. An intelligent managed pressure drilling system with high performance [EB/OL]. (2019–08–02)[2019–09–10]. http://www.oilsns.com/article/413800.
[57] 王植锐,王俊良. 国外旋转导向技术的发展及国内现状[J]. 钻采工艺, 2018, 41(2): 37–41. doi: 10.3969/J.ISSN.1006-768X.2018.02.11 WANG Zhirui, WANG Junliang. Development of rotary steerable technology in foreign countries and China[J]. Drilling & Production Technology, 2018, 41(2): 37–41. doi: 10.3969/J.ISSN.1006-768X.2018.02.11
[58] GRINI M, RICE B, STROMBERG S. Field development utilizing rotary steering technology[R]. SPE 71398, 2001.
[59] ZALLUHOGLU U, DEMIRER N, MARCK J, et al. Steering advisory system for rotary steerable systems[R]. SPE 194090, 2019.
[60] 陈虎,和鹏飞,万圣良. 国产旋转导向及随钻测井系统在渤海某油田的应用[J]. 探矿工程(岩土钻掘工程), 2017, 44(3): 35–38. CHEN Hu, HE Pengfei, WAN Shengliang. Application of China-made rotary steering and logging while drilling systems in adjustment well of Bohai[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2017, 44(3): 35–38.
-
期刊类型引用(4)
1. 叶建平. 中国煤层气勘探开发及其科技进步历程回顾与思考. 煤田地质与勘探. 2025(01): 114-127 . 百度学术
2. 李彦操,刘金明,邱春阳,赵成龙,杨倩云,杨大伟. 埕北326 A-7大位移井钻井液技术. 四川化工. 2024(01): 40-44 . 百度学术
3. 白杨,王路一,李翔,窦幻君,罗平亚. 煤层气储层保护钻井液技术研究进展. 天然气工业. 2024(10): 182-194 . 百度学术
4. 梁龙军,陈捷,颜智华,高为,易旺,胡海洋. 六盘水煤田大倾角地层煤层气L型水平井钻完井技术. 断块油气田. 2023(04): 616-623 . 百度学术
其他类型引用(1)